
Abstract This paper proposes an Interface Transparency Thesis concerning how

linguistic meanings are related to the cognitive systems that are used to evaluate

sentences for truth/falsity: a declarative sentence S is semantically associated with a

canonical procedure for determining whether S is true; while this procedure need not

be used as a verification strategy, competent speakers are biased towards strategies that

directly reflect canonical specifications of truth conditions. Evidence in favor of this

hypothesis comes from a psycholinguistic experiment examining adult judgments

concerning ‘Most of the dots are blue’. This sentence is true if and only if the number of

blue dots exceeds the number of nonblue dots. But this leaves unsettled, e.g., how the

second cardinality is specified for purposes of understanding and/or verification: via

the nonblue things, given a restriction to the dots, as in ‘|{x: Dot(x) & ~Blue(x)}|’; via

the blue things, given the same restriction, and subtraction from the number of dots, as

in ‘|{x: Dot(x)}| ) |{x: Dot(x) & Blue(x)}|’; or in some other way. Psycholinguistic

evidence and psychophysical modeling support the second hypothesis.
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1 Introduction: where does meaning make contact with the rest of cognition?

Theories of meaning aim to specify the semantic properties of expressions. It is not

obvious what these properties are. But traditionally, theories have been responsive

to two basic concerns. First, a semantic theory for a natural language L is often said

to be ‘‘empirically adequate’’ to the extent that the theory associates declarative

sentences of L with truth conditions in accord with speakers’ intuitions.1 Second,

such a theory must be compositional, at least in the following sense: the theory

assigns ‘‘atomic’’ semantic properties to finitely many expressions of L; and for

every other expression, its semantic properties are somehow determined by its

constituents and their arrangement. In short, the idea is that a semantic theory

should compositionally associate sentences with truth conditions. Satisfying this

requirement, even for a single language, remains an elusive goal. But there has been

progress, with many insights gained.

The catch, as every semanticist knows, is that given one compositional specifi-

cation of truth conditions—say, for sentences of the form ‘Most Ds are bs’—it is

often easy to construct others. Even given various assumptions about the relevant

syntax and its semantic role, there may be many truth-conditionally equivalent

representations of the semantic properties exhibited by the expressions of a given

language. Among theorists, there is broad agreement that not all such representa-

tions are equally good as proposals about how competent speakers understand

expressions.2 Put another way, many theorists suspect that sentential meanings are

individuated more finely than truth conditions, and that distinct specifications of

truth conditions can suggest empirically distinguishable psychological hypotheses.

But justifying specific proposals requires appeal to additional sources of evidence.

In this paper, we focus on one such source: the interface between linguistic

expressions and the cognitive systems that provide the information used, in con-

texts, to evaluate (declarative) sentences for truth/falsity. In particular, one can gain

insight into the meaning of the determiner most by examining how sentences like

Most of the dots are blue interface with the visual system. We argue that the

meaning of an expression constrains how the visual system can be used to evaluate

the truth of that expression, even to the point of blocking computations native to the

visual system that would allow for more accurate calculations.

1 Cf. Davidson (1967) and Montague (1970), each of whom was inspired by Tarski’s (1944) specification

of a ‘‘materially adequate’’ notion of truth for certain invented languages. This leaves room for a

pragmatics/semantics distinction, while allowing the use of model-theoretic techniques in describing

entailments that competent speakers recognize. It also allows for views according to which truth con-

ditions are unstructured abstracta (e.g., functions from possible worlds to truth-values). But at least to a

first approximation: whatever ‘‘meanings’’ get assigned to sentences, they determine truth values given

the nonlinguistic facts, and are determined by the constituent morphemes given the relevant syntax. For a

second approximation that is less tied to truth per se, see Pietroski (2010).
2 Evans (1981) suggested the potential relevance of many considerations, including aphasias; see also

Davies (1987), Peacocke (1986), and Chomsky’s (1986) E-language/I-language distinction, echoing Marr

(1982) and Church (1941), who distinguished functions (in extension) from ways of computing them.
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Extending other work, our conclusion is that competent speakers associate sen-

tences with canonical specifications of truth conditions, and that these specifications

provide default verification procedures. From this perspective, examining how a

sentence constrains its verification can provide clues about how speakers specify the

truth condition in question. More generally, our data support an Interface Trans-

parency Thesis (ITT), according to which speakers exhibit a bias towards the ver-

ification procedures provided by canonical specifications of truth conditions. In

conjunction with specific hypotheses about canonical specifications, the ITT leads to

substantive predictions, because given available information, the canonical proce-

dure may have to rely on (noisy) input representations that lead to less accuracy in

judgment, compared with an alternative strategy that is cognitively available to

speakers. To foreshadow: if speakers verify Most of the dots are blue by comparing

the number of blue dots to the result of subtracting this number from the number of

dots—as suggested by the specification ‘|{x: Dot(x) & Blue(x)}|>|{x: Dot(x)}| – |{x:

Dot(x) & Blue(x)}|’—this leads to predictable inaccuracies in judgment, thereby

confirming the hypothesis that the operation of cardinality subtraction is invoked by

the default verification strategy that speakers associate with most.

There is nothing new in the idea that grammars (as internalized procedures)

generate objects that interface with other domains of perception, action, and cog-

nition. From the earliest days of generative phonology, linguists have been con-

cerned with the relation between phonological, articulatory, and acoustic properties

of speech (Jacobson et al. 1952; Liberman et al. 1967; Stevens 1972)—asking about

the degree to which phonological properties are constrained by independent systems

of articulation and audition, both in the acquired grammar (Liberman and Mattingly

1985; Halle 2002; Poeppel et al. 2008) and in the acquisition process (Kuhl 1993;

Werker 1995; Jusczyk 1997). Katz and Fodor (1963) suggested a parallel approach

to the study of meaning. But until more recently, the tradition in natural language

semantics has been to focus on relations that expressions bear to entities in an

idealized model of the world that speakers talk about, as opposed to language-

independent representations.

As a long notable exception, Jackendoff (1983, 1990, 2002) has usefully illus-

trated how theorists can draw conclusions about conceptual structures from lin-

guistic data. Inferences in the opposite direction, however, have been harder to

come by (but see Landau and Jackendoff 1993 for one attempt). This difficulty

derives in part from the fact that one cannot be sure which conceptual systems

interface with the language faculty, and in part from the fact that especially relevant

cognitive subsystems have not been adequately described. In the current paper, we

focus on the quantificational determiner most as a case study of the relation between

cognitive and linguistic representations of quantification, comparison, and mea-

surement. Quantificational expressions have been studied extensively and profitably

within several disciplines—including linguistics, philosophy, and psychology

—making it possible to formulate precise hypotheses about the interface between

semantics and cognition in this domain.

Proportional quantifiers like most have long been of interest, in part because their

contributions to sentential truth conditions cannot be specified in a standard first-

order predicate logic of the sort characterized by Tarski (1944); see Rescher (1962).
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To accommodate this expressive capacity of natural language, Barwise and Cooper

(1981) adopted Generalized Quantifier Theory (Mostkowski 1957), treating quan-

tifiers as expressing relations between sets as in Frege (1884, 1892); see also Higg-

inbotham and May (1981). For example, most can be treated as expressing a

comparative relation between the cardinalities of two sets—or equivalently, as a

function that maps each ordered pair of sets (X, Y) to a truth value as in (1a).3

Correlatively, (1b) is true iff the toys in the box outnumber the toys that are not in the

box.

(1) a. MOST(X, Y) ¼ TRUE iff |Y ˙ X| > |Y ) X|, otherwise FALSE

b. Most of the toys are in the box.

Likewise, ‘every’, ‘some’, and ‘no’ can be associated with the following relations,

respectively: |Y ) X| ¼ 0; |Y ˙ X|> 0; |Y ˙ X| ¼ 0. Generalized Quantifier Theory

(GQT) thus provides a useful vocabulary for representing natural language quan-

tifiers in a unified way. But for any given quantifier, the theory is silent with respect

to the choice among truth-conditionally equivalent specifications of the corre-

sponding second-order relation. Nonetheless, if GQT is correct, most indicates a

relation R such that each competent speaker of English represents R in some way.

Indeed, each speaker presumably represents R in a format that supports at least one

evaluation procedure that can interface with cognitive systems which provide rep-

resentations of the sort required to judge whether R is exhibited by the sets in

question (e.g., the toys in the box and the other toys). This raises the question of

whether all competent speakers represent R in a common way, and if so, what that

common format is; cf. Hackl (2009).

2 Truth-conditionally equivalent alternatives

Pietroski et al. (2009) focus on the fact that the truth of (2) can be represented in

either of the ways shown in (3), letting ‘DOT’ and ‘BLUE’ stand for {x: Dot(x)}

and {x: Blue(x)}.4

(2) Most of the dots are blue.

(3) a. >(|DOT ˙ BLUE|, |DOT – BLUE|)

b. OneToOnePlus(DOT ˙ BLUE, DOT – BLUE)

The relation in (3a), expressed with ‘>’, is exhibited by cardinalities of sets (natural

numbers). In (3b), by contrast, ‘OneToOnePlus’ expresses a relation exhibited by

3 While ‘>’ signifies a relation between cardinalities, ‘)’ does not signify cardinality-subtraction. In (1a),

it signifies set-subtraction: ‘Y ) X’ is equivalent to ‘{x: (x ˛ Y) & ~(x ˛ X)}’—though, following Boolos

(1998), one can eschew the appeal to sets and speak of the ‘Ys minus any Xs’.
4 Here, we ignore any procedural differences between conjunction/negation of predicates and intersec-

tion/subtraction of sets: {x: Dot(x) & Blue(x)} vs. {x: Dot(x)} ˙ {x: Blue(x)}, {x: Dot(x) & ~Blue(x)} vs.

{x: Dot(x)} ) {x: Blue(x)}.
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sets themselves (or their elements). Two sets X and Y (e.g., X being the set of blue

dots, and Y being the set of nonblue dots) exhibit this relation iff the elements of X

and the elements of Y do not correspond one-to-one, but some proper subset of X is

such that its elements do correspond one-to-one with the elements of Y. Thus, (3b)

captures the idea that pairing each nonblue dot with exactly one blue dot would

leave at least one blue dot unpaired with any nonblue dot.

On both analyses, most indicates the same relation. But only (3a) specifies this

relation in terms of cardinalities. In terms of specifying truth conditions composi-

tionally, (3a) and (3b) are equivalent. Yet they suggest different evaluation proce-

dures. Both require, for the truth of (2), more blue dots than nonblue dots. But as

procedures for determining if this requirement is met, (3a) calls for comparing

numbers, while (3b) calls for pairing dots.

Hackl (2009) focuses on another kind of contrast, noting that there are alternative

formulations of which sets and numbers are compared, even if one assumes that the

most-relation is to be specified in terms of numbers. In particular, one might replace

(3a) with (4), allowing for rational numbers.

(4) >(|DOT ˙ BLUE|, ½|DOT|)

Provably, (3a) is truth-conditionally equivalent to (4): the number of blue dots is

more than half the number of dots iff there are more blue dots than nonblue dots.

But as a procedure for determining if this truth condition is met, (3a) calls for

subtracting the blue things from the dots, in a way that (4) does not; (4) calls for

division by two, in a way that (3a) does not; and (4) also calls for computing the

cardinality of all the dots, in a way that (3a) does not. This is the kind of contrast we

want to consider. We return below to Hackl’s reasons for not adopting the speci-

fication in (4). But we will suggest the specification in (5),

(5) >(|DOT ˙ BLUE|, |DOT| – |DOT ˙ BLUE|)

which does call for computing the cardinality of all the dots and subtracting from

this number the cardinality of the blue dots.

Given the many truth-conditional equivalences, one wants to know if there is a

fact of the matter about which, if any, are better than others. Are they mere nota-

tional variants, like the difference between measuring temperature in Fahrenheit or

Celsius? Or can at least some of the contrasts be regarded as alternative psycho-

logical hypotheses about speakers? We pursue the latter option, taking the position

that the meaning of a declarative sentence is not a mere compositionally determined

truth condition, even if such conditions are functions from worlds to truth values; cf.

Cresswell (1985). We argue that different representations of a truth condition often

correspond to interestingly different proposals about how competent speakers

specify that truth condition for purposes of canonical verification. But as noted

above, and as Hackl (2009) discusses, finding evidence for or against any such

proposals requires methods that go beyond the usual ones for eliciting competent

speaker intuitions about the truth/falsity of sentences.
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3 On verification procedures

The differences we have been talking about concern the operations represented in

specifications of truth conditions. We will argue below that certain specifications are

semantically privileged: competent speakers represent the truth-conditional contri-

bution of most in terms of certain operations, thereby biasing speakers towards the

use of algorithms that employ those operations in determining the truth/falsity of

sentences like ‘Most of the dots are blue’. But this is fully compatible with the fact

that given any one specification of a truth condition, there can be many methods for

determining whether that condition obtains. Indeed, the examples above illustrate

this point. Our claim is not that speakers always, or even typically, use canonical

specifications of truth conditions as algorithms for determining the truth/falsity of

sentences in contexts. Verification obviously depends on the information available

in the context at hand.

Consider the range of statements in (6a–d):

(6) a. Rabbits are furry.

b. Chicago has great architecture.

c. Most of the dots are blue.

d. La neige est blanche.

If you want to know whether (6a) is true, you might check some rabbits, or a

website. If you want to know whether (6b) is true, you might go to Chicago and look

around, or you might read a book. If you want to know whether (6c) is true, you

might count if you have the time and opportunity, or you might estimate the relevant

cardinalities. Or you might just ask someone else, especially if you are color blind.

And of course, if you want to know whether (6d) is true, there are ways of finding

out even without understanding the sentence: ask someone who speaks French. But

when a speaker understands a sentence and judges it to be true or false in a given

context, she presumably does at least two things: she compositionally determines

the relevant truth condition, and she determines whether that condition obtains in

the context. At least typically, the latter presupposes the former.

Now, you can reliably assess the truth of a sentence by asking your neighbor only

if you can treat his response as a reliable indicator of whether that sentence’s truth

condition obtains. And in the general case, this requires that you know which truth

condition this is. Suppose, for illustration, that you understand (2) as in (3a).

(2) Most of the dots are blue.

(3a) >(|DOT ˙ BLUE|, |DOT – BLUE|)

If you defer to a neighbor, you are effectively relying on that neighbor to tell you

whether the number of blue dots is greater than the number of nonblue dots. But

then your verification procedure, for deciding whether (2) is true or false, does not
proceed as follows: determine the number of blue dots, determine the number of

J. Lidz et al.

123



nonblue dots, and figure out if the first number is bigger. Your neighbor may or may

not employ this procedure, but you don’t. Understanding (2) as in (3a) does not

commit you to following any particular procedure for evaluating (2). In this sense,

actual verification procedures may be distinct from any procedures/algorithms that

result from specifying truth conditions. But the question one seeks to answer, by

whatever verification procedure one uses in the context, is determined by how one

understands the sentence.

So in one perfectly fine sense, specifications of truth conditions are indeed ver-

ification procedures, even in contexts where these procedures cannot be employed;

cf. Dummett (1973), Peacocke (1986), Horty (2007) and references there. If you

understand (2) as in (3a), then you presumably know that one could determine the

truth or falsity of (2) by determining and comparing the relevant cardinalities. In a

given context, you might not be able to determine the truth or falsity of (2) in this

way; and perhaps in practice, no real person could. The relevant dots might be too

far away, or occluded. More generally, the verification procedure that is invoked by

specifying a truth condition need not be practical in a given context. But when

conditions are favorable, one can figure out if (2) is true by determining and

comparing two cardinalities.

Indeed, the experiment presented in Sect. 5 below provides evidence for the

following hypothesis:

Interface Transparency Thesis (ITT):
The verification procedures employed in understanding a declarative sentence

are biased towards algorithms that directly compute the relations and opera-

tions expressed by the semantic representation of that sentence.

For example, suppose that speakers understand (2) along the lines shown in (5),

repeated here.

(5) >(|DOT ˙ BLUE|, |DOT| ) |DOT ˙ BLUE|)

The ITT implies that speakers who specify the truth of (2) in this way are biased

towards verification procedures that involve representing the number of blue dots,

the number of dots, and the result of subtracting the former from the latter. In this

sense, sentence meanings are not verification independent. Rather, a sentence

meaning determines an instruction to interfacing systems concerning what infor-

mation to gather in order to verify the sentence.

In a particular context, this instruction may not be executable; in which case, if

evaluation is required, speakers with other resources will try other methods. And for

many lexical items, the canonical verification procedures may be atomic; cf. Fodor

(2003). We suspect that even for ‘dot’ and ‘blue’, there is much to be said. But at

least for ‘‘logical’’ vocabulary, an old and plausible idea is that lexical meanings

provide default verification procedures that speakers use when they can.

As discussed below, we test the ITT by pitting the predicted bias for transparency

against computations native to the visual system. We offer evidence that a sentence

meaning can lead competent evaluators to ignore relevant information that their

visual systems automatically provide—in favor of an alternative procedure that calls

Interface transparency and the psychosemantics of most
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for different information—as if the sentence meaning makes certain evaluation

procedures preferable to others, as predicted by the ITT. Before turning to our

experimentation, however, it is worth reviewing some earlier results that motivate

this general conception of how meaning is related to verification.

4 Most: prior results

In Pietroski et al. (2009), we put people in a range of situations that differed in their

amenability to a verification procedure for most characterized as in (3b), repeated

below.

(3b) OneToOnePlus(DOT ˙ BLUE, DOT ) BLUE)

Consider the displays in Fig. 1. They each contain 10 yellow and eight blue dots,

but differ in the degree to which they invite pairing the dots. In Fig. 1a, the dots are

scattered randomly on the screen. In Fig. 1b, they are scattered, but in pairs such

that the only singleton dots come from the larger of the two sets. In Fig. 1c, the dots

are arranged in two columns and 10 rows, with each row consisting of either a

mixed pair of yellow and blue dots, or only a singleton yellow/blue dot.

Across many trials, we flashed such displays on a computer screen for 200 ms

each and asked people to determine on each trial whether (2) was true.

(2) Most of the dots are blue.

Fig. 1 Displays from Pietroski et al. (2009)
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We found that subjects’ accuracy was unaffected by manipulating suitability to a

verification procedure stated in terms of one-to-one correspondence. And in separate

studies, we confirmed that (in 200 ms) people can identify the color of the

‘‘unpaired’’ dots in scenes like Fig. 1b, with better performance than when asked to

evaluate (2). This suggests that speakers do not understand (2) in terms of one-to-

one correspondence. If they did, scenes that invite a OneToOnePlus verification

procedure should have made verification easier. But performance across scenes

revealed no such difference.

More positively, and more importantly, our data also provided evidence that

subjects used approximate representations of numerosity to evaluate (2). Responses

showed the behavioral signature of the Approximate Number System (ANS), an

evolutionarily ancient piece of cognitive machinery that is shared throughout the

animal kingdom and does not require explicit training with number in order to develop

(Dehaene 1997; Feigenson et al. 2004). The ANS generates an approximate repre-

sentation of the number of items in a set, in accord with Weber’s law: the discrimi-

nability of two quantities is a function of their ratio. We found that for the adult

subjects in Pietroski et al. (2009), the probability of evaluating (2) correctly was a

function of the ratio of the number of blue dots to the number of nonblue (yellow) dots.

Moreover, not only did performance improve with easier ratios, the specific shape of

this improvement fit an independently confirmed psychophysical model of ANS

representations (Pica et al. 2004; Halberda et al. 2008), with R2 values greater than .85

even for scenes like Fig. 1b. See Appendix 1 for details of the model.

This fit confirmed the hypothesis that ANS representations were involved in

evaluating (2), and hence that at least in some conditions, the numerical content

required to verify a claim like (2) is provided by the ANS. But while this system was

implicated in verification, suggesting that subjects understood (2) as a claim to be

evaluated by comparing cardinalities, nothing yet follows about the cardinalities

compared. Likewise, nothing follows about how the cardinalities are represented, or

where approximation is involved. But let us set aside the question of whether the

cardinality comparisons for most concern precise cardinalities or ANS analogs, and

recall the distinction highlighted in Hackl (2009), repeated in (7).

(7) a. >(|DOT ˙ BLUE|, |DOT ) BLUE|)

b. >(|DOT ˙ BLUE|, 1/2|DOT|)

To distinguish these candidate meanings for most, Hackl asked people to evaluate

sentences like (8a) and (8b) in an experimental paradigm he called ‘‘self-paced

counting.’’

(8) a. Most of the dots are blue.

b. More than half of the dots are blue.

In this paradigm, inspired by studies of independent phenomena that used self-paced

reading tasks, each participant sees a series of uncolored circles on a computer

screen. Pressing the space bar causes some of the dots to become (or be revealed as)

red or blue. Pressing the space bar again causes those dots to return to being
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uncolored, and a subsequent subset becomes colored. This continues until the

participant indicates his judgment, by pressing an appropriate button, as to whether

the test sentence is true or false. Participants were told to respond as quickly and

accurately as possible. The idea was to get a measure of how much information

people need to make a confident judgment. Hackl found that while accuracy and

overall response times for sentences like (8a) and (8b) were not significantly dif-

ferent, reaction times between successive space bar presses were significantly faster

when the test sentence included most as opposed to more than half. He concluded

that the verification procedures, and thus the specifications of the common truth

condition, differ in some way.

Hackl went on to offer and defend some plausible speculations about why ‘‘the

strategy triggered by most is better suited for the way information is uncovered in

these screens’’ (p. 89). An adequate account of how most is related to more will need

to accommodate his findings, along with his crosslinguistic data. But here we want to

stress his use of an experimental technique designed to test for differing verification

strategies corresponding to distinct representations of a common truth condition. In

what follows, we will assume that the meaning of most is specified in terms of a

relation between cardinalities (as opposed to one-to-one pairing of individuals in a

set), but not in terms that invite comparison of the ‘‘intersection’’ cardinality (|DOT ˙
BLUE|) with half of the ‘‘restricted domain’’ cardinality (|DOT|). We will also

assume that at least for purposes of verification when all the dots are presented rapidly

and at once, the cardinalities to be compared are provided by the ANS.

While these are important steps forward, many questions remain. Evidence

against the specifications (9b) and (9c) is not yet evidence in favor of (9a).

(9) a. >(|DOT ˙ BLUE|, |DOT ) BLUE|)

b. >(|DOT ˙ BLUE|, 1/2|DOT|)

c. OneToOnePlus(DOT ˙ BLUE, DOT ) BLUE)

There are other possibilities. In particular, while there may be no viable alternative

to computing the intersection cardinality, the ‘‘contrast’’ cardinality (|DOT )
BLUE|) might be computed in various ways, depending on the context. Recall (5).

(5) >(|DOT ˙ BLUE|, |DOT| ) |DOT ˙ BLUE|)

One might think instead that given blue dots and yellow dots, and no others, subjects

surely computed the number of yellow dots and took the result to be the number of

nonblue dots. But if so, they computed and used (for verification) the cardinality of a

set—the yellow dots—not represented by any word in the target sentence.

One can, of course, hypothesize that speakers understand most as indicated in

(9a), and use information available in the two-color context to infer that (9a) is true

iff there are more blue dots than yellow dots. Evidence that people do naturally

evaluate sentences in this fashion, when not forced to do so, would be prima facie

evidence against the Interface Transparency Thesis. For the ITT predicts a bias in

favor of the canonical verification procedure, as opposed to any context-specific

procedure, like using the number of yellow dots as the number of nonblue dots.
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More generally, if representing the ~bs as such requires a context-specific infer-

ence—if people need to represent the ~bs in some ‘‘more positive’’ way and infer

that they are the ~bs—then one might suspect that the meaning of most can be

correctly specified without appeal to negation. Perhaps one could represent the dots

minus the blues, or the dots minus the blue dots, without representing the not-blues

as such. But then the difference between (9a) and (5), as hypothesized default

verification strategies, is rather subtle. Are speakers biased towards (i) subtracting

some dots from others, and computing two cardinalities, neither of which is the total

number of dots; or (ii) using the intersection cardinality twice, and subtracting this

number from the total number of dots? To repeat, the meaning of a sentence does

not determine the verification procedure used in all contexts. But if the ITT is true,

verification can provide a window into meaning, given independently confirmed

claims about relevant aspects of cognition. Correlatively, having speakers evaluate

sentences in controlled situations where the relevant aspects of non-linguistic

cognition are relatively well understood can simultaneously test the ITT and specific

hypotheses about how speakers specify the truth conditions of their sentences. In the

case at hand, suppose that representing the number of yellow dots in an array is a

rapid and automatic computation of the visual system, and likewise for the (total)

number of dots in the array. And suppose that the number of yellow dots is not used

to evaluate ‘Most of the dots are blue’, in an array with blue dots and yellow dots,

while the number of dots is used. Evidence for such claims could be used to help

confirm the ITT. For if the relevant interface system fails to use certain information

that it automatically computes, when faced with an evaluative task, then it becomes

plausible that the representation of the sentence must be responsible for such a

failure (cf. Kahneman and Tversky 1973). It is precisely this argument that we

undertook to pursue in detail in the experiment presented below.

5 The experiment

5.1 Background: Interface constraints imposed by the visual system

Imagine that a listener was shown a briefly flashed display of dots of many colors

(Fig. 2) and was asked to assess whether (10) is true of the display.

Fig. 2
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(10) Most of the dots are blue

(11) a. >(|DOT ˙ BLUE|, |DOT ) BLUE|)

b. >(|DOT ˙ BLUE|, |DOT| ) |DOT ˙ BLUE|)

The specification (11a) invites a verification procedure that attends to and enu-

merates the blue dots, likewise for the nonblue dots, and compares the two numbers.

The specification (11b) invites a verification procedure that attends to and enu-

merates the dots, likewise for the blue dots, subtracts the latter from the former, and

then compares the result to the number of blue dots. The difference between these

two verification procedures lies in whether the nonblue dots are selected, with a

subsequent step of estimating their cardinality, as in (11a), or whether this cardi-

nality is computed, as in (11b). This leaves open just how selection is achieved. The

important distinction will be whether the ANS is employed to estimate the nonblue

dots or the dots—and correlatively, whether the second argument of ‘>’ (i.e., the

number compared with |DOT ˙ BLUE|) is an estimate of nonblue dots or a com-

putation performed on two estimations.

We can therefore ask whether it is psychologically possible to directly select and

enumerate both the blue dots (as both computations would require) and the nonblue

dots (as required only for (11a)). Even without us briefly flashing the array, the reader

can likely experience that selecting only the blue dots from among all of the dots is

easy. Research on adults’ ability to search for a colored item among colored dis-

tractors has shown this to be the case; blue, and all other categorizable colors, works as

an early visual feature that can be found very quickly in a visual scene when the

distractors are of saliently different colors, as they are in Fig. 2 (Wolfe 1998; Hal-

berda et al. 2006). But similar research also reveals that a set defined by a negation of

an early visual feature or by a disjunctive combination of early visual features (e.g.

dots that are either yellow OR red) is not easily selectable. Adults are unable to rapidly

search all items in an array in order to find all the items that are either yellow or red

(Wolfe 1998; Treisman and Gormican 1988; Treisman and Souther 1985). This calls

into question the viability of having the meaning in (11a) map directly onto a veri-

fication procedure which requires listeners to directly attend and enumerate both the

blue and the nonblue dots for purposes of ordinal comparison. Because the nonblue

dots are a heterogenous set, they cannot be attended directly. Moreover, building up

the nonblue dots by constructing a disjunctive combination of all nonblue sets is also

not a straightforward visual computation. Listeners simply would not be able to

directly attend the heterogeneous set of nonblue dots.

But, looking at Fig. 2, it seems that we can assess whether most of the dots are

blue, and so the question becomes (i) how we are accomplishing this and (ii)

whether (11b) provides a more natural verification procedure. Additional evidence

from the psychological literature is helpful in this regard.

Halberda et al. (2006) have demonstrated that adults can use the Approximate

Number System to estimate the cardinality of up to three sets in parallel. On each

trial in Halberda et al. (2006), participants were shown a brief flash that contained

from 1 to 6 colors of dots randomly scattered on a black background, similar to
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Fig. 2. Either before or after the flash, participants were asked to approximately

enumerate only one of the sets (either the superset of all dots irrespective of color, or

a particular color subset). On a ‘‘Probe After’’ trial, where subjects did not know

which set to report until after the flash had gone, the most likely strategy is to

enumerate as many sets as possible and hope that one of those sets would be the one

asked. By comparing performance on ‘‘Probe After’’ to ‘‘Probe Before’’ trials,

Halberda et al. (2006) were able to estimate how many sets adults could enumerate

from a single flash. Results suggested that adults always attend and enumerate the

superset of all dots. In addition to the superset, adults could also attend and enu-

merate some of the color subsets on multi-color trials. The typical adult appeared to

enumerate the superset of all dots and two of the color subsets, but no more. For

example, shown the flash depicted in Fig. 2, a typical adult would know that there

had been approximately 14 total dots, and perhaps that there had been approxi-

mately 4 red dots and approximately 6 yellow dots, but nothing more.

That adults can enumerate multiple sets from a single flash using the Approxi-

mate Number System highlights the potential relevance of this system for verifi-

cation procedures associated with natural language quantifiers like most. A meaning

like (11a), translated directly into a verification procedure, is implausible because it

involves selecting a heterogeneous set. However, this meaning invites the trans-

formation in (12), wherein the set of nonblue dots is constructed by summing the

cardinalities of each color subset comprising the nonblue dots.

(12) >(|DOT ˙ BLUE|, |DOT ˙ RED| + |DOT ˙ YELLOW|)

However, such a transformation would be useful only when the display contains no

more than three colors, given Halberda et al.’s observation of a 3-set limit on early

visual attention and working memory. That is, to verify this meaning would require

the visual system to attend the color subset of blue dots, the color subset of red dots

and the color subset of yellow dots. If there are only these three colors present in the

array, then an addition of yellow and red dots would provide the listener with the

number of nonblue dots, which could then be compared to the number of blue dots

to yield a truth value. But, because adult humans appear to be limited to enumer-

ating only up to three sets at once, this verification procedure, and hence the

meaning in (11a), becomes less plausible as the number of color subsets increases.

A meaning like (11b), however, is straightforwardly verified with these

resources, since the sets required for its verification (one color plus the superset) are

easily and automatically attended by the visual system. Moreover, this meaning

does not become less plausible as the number of color subsets increases.5 That is, to

5 Halberda et al. (2006) found no reduction in enumeration accuracy for adults’ ability to enumerate a

color subset when the number of colors in the distractor subsets increased. Performance was the same for

enumerating the blue dots if there were no other colors present, or if there were blue and yellow dots;

blue, yellow, and red dots; or even blue, yellow, red, green, purple, and cyan dots. Also, Halberda et al.

(2006) found no cost for estimating the cardinality of the superset of all dots as the number of colors in

the stimulus increased. So, enumeration of the blue dots and the superset appear to be unaffected by

increasing the number of color subsets, making the meaning expressed in (11b) plausible as the number of

sets increases and the meaning in (11a)/(14) implausible.
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verify a meaning like (11b) would require first enumerating the superset of all dots

and the color subset of blue dots. The next step would involve a subtraction of these

two values to calculate the number of nonblue dots. The final step would compare

the number of blue dots to the number of nonblue dots to yield a truth value.

Because only the superset and one color subset need be attended, the meaning in

(11b), along with its associated verification procedure, is psychologically plausible,

no matter how many color subsets there are, so long as it is possible to perform the

subtraction and comparison computations.

In order to determine whether the canonical specification of the meaning asso-

ciated with most is like (11a) or like (11b), we asked adult participants to verify

whether most of the dots in an array were blue across many trials where we ran-

domly varied the number of colors in the array. If participants verify most via the

meaning expressed in (11a), then we expect accuracy to decline as the number of

colors in the array increases. On the other hand, if participants verify most via the

meaning expressed in (11b), then we expect the number of colors to have no impact

on their responses; see Sect. 5.6.

5.2 Method

We used a common visual identification paradigm to evaluate the underlying

meaning for most.

5.3 Participants

Twelve naive adults with normal vision each received $5 for participation.

5.4 Materials and apparatus

Each participant viewed 400 trials on an LCD screen (27.3 · 33.7 cm). Viewing

distance was unconstrained, but averaged approximately 50 cm. The diameter of a

typical dot subtended approximately 0.8� of visual angle from a viewing distance of

50 cm.

5.5 Design and procedure

On each trial, subjects saw a 150 ms display containing dots of at least two colors

and at most five colors (blue, yellow, red, cyan, magenta). Blue dots were present on

every trial. Subjects were asked to answer the question ‘‘Are most of the dots

blue?’’ for each trial. The number of dots of each color varied between 5 and 17.

Whether the blue set represented more than half of the total number of dots (that is,

whether the correct answer to ‘‘Are most of the dots blue?’’ was Yes or No) was

randomized. Subjects answered ‘‘Yes’’ or ‘‘No’’ by pressing buttons on a keyboard.

Within each trial type (i.e., 2–5 colors), the ratio of blue to nonblue dots varied

between five possible ratios (1:2, 2:3, 3:4, 5:6, and 7:8). Within each of these ratio

bins the blue set was the larger set on half of the trials.
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Half of the trials for each trial type (2–5 colors) for each ratio bin were ‘‘dot size-

controlled’’ trials on which, while individual dot sizes varied, the size of the average

blue dot was equal to the size of the average nonblue dot. On dot size-controlled

trials the set with the larger number of dots would also have a larger total area on the

screen (i.e., more total blue pixels when blue was the larger set). The other half of

the trials were ‘‘area-controlled’’ trials in which individual dot sizes varied and the

total number of blue and nonblue pixels on the screen was equated (i.e., smaller blue

dots on average when blue was the larger set). On both dot size-controlled and area-

controlled trials individual dot sizes were randomly varied by up to 35% of the set

average. This discouraged the use of individual dot size as a proxy for number.

All trials were randomly shuffled such that number of colors (2–5), correct

answer (Yes/No), ratio bin (1:2–7:8), and stimulus type (dot size-controlled, area-

controlled) varied randomly during the experiment.

5.6 Predictions

If subjects rely on the imprecise cardinality representations of the ANS, then

accuracy should decline as a function of ratio, and should be well fit by a psy-

chophysical model of the ANS. With respect to the question of whether (11a) or

(11b) underlies the meaning of most, we consider two hypotheses. First, if subjects

determine the set of nonblue dots by determining the cardinality of each subset and

then summing the nonblues together, in keeping with algorithm (12), we predict that

subjects should succeed at the task when there are two and perhaps three colors on

the screen but that performance should rapidly decline for higher numbers of colors

(we will call this the ‘‘selection hypothesis’’). This prediction derives from the

observation from Halberda et al. (2006) that at rapid presentation rates, the visual

system can accurately track a maximum of three sets. The second hypothesis, which

we will call the ‘‘subtraction hypothesis,’’ holds that the cardinality of the set of

nonblue dots is determined by subtracting the cardinality of the focused set (the blue

set) from the cardinality of the superset (the dots), as in (11b). Consequently, the

computation determining the truth of a most-statement is predicted to be identical

across all trial types. Since only two sets ever need to be selected by the visual

system, the number of colors should have no impact on responses.

5.7 Results

Results were entirely consistent with the subtraction hypothesis, suggesting that

algorithm (11b) reflects the canonical specification of the meaning of most and that

this algorithm relies on the representations of the ANS. There were no differences

across trial types as a function of the number of colors in the display (Fig. 3),

and performance on every trial type was well fit by a psychophysics model of the

ANS (Table 1; Fig. 4). See Appendix 1 for more details about the psychophysics

modeling.

Interface transparency and the psychosemantics of most

123



A detailed description of the statistics and figures follows. Percent correct for

each participant for each ratio was entered into a 4 Trial Type (2-, 3-, 4-, 5-color) ·
2 Stimulus Type (dot size-controlled, area-controlled) · 5 Ratio Repeated Measures

ANOVA. There was a significant effect of Ratio as subjects did better with easier

ratios: F(4, 44) = 109.092, p < .001; a significant effect of Stimulus Type as subjects

did slightly better on dot size-controlled than area-controlled trials: F(1, 11) =

7.326, p < .05; and most importantly, no effect of Trial Type as subjects did equally

Table 1 Parameter estimates

from psychophysical model
Trial type R2 Weber fraction Nearest whole-

number ratio

2-Color .9480 .290 3:4

3-Color .9586 .320 3:4

4-Color .9813 .283 3:4

5-Color .9625 .316 3:4

Fig. 3
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well independent of the number of colors in the stimulus: F(3, 33) = 0.276, p = .842.

Because the small but significant Stimulus Type effect does not bear on the infer-

ences we make about the algorithms involved, we combined performance for each

subject for each Ratio and each Trial Type for further analyses.

As can be seen in Fig. 3, while performance declines as a function of Ratio,

performance is the same independent of the number of colors in the array.6 This

supports the predictions of the subtraction hypothesis that on every trial type,

irrespective of the number of colors in the display, subjects attend the superset of all

dots and the focused set (blue dots), enumerate each, and then perform a subtraction

in order to calculate the number of nonblue dots, before comparing the number of

blue dots to the number of nonblue dots. Obviously, we are not suggesting that this

subtraction is a conscious subtraction, and we doubt that subjects are even aware of

how they are figuring out what answer to give. The subtraction hypothesis, i.e., the

meaning expressed in (11b), is meant to characterize the unconscious computations

that underlie the meaning of most and allow it to interface with the rest of psy-

chology.

The Approximate Number System is known to contain both the representational

and the computational machinery necessary to represent imprecise cardinalities,

perform subtractions of these cardinalities, and make ordinal comparisons of these

cardinalities (Whalen et al. 1999; Dehaene 1997; Feigenson et al. 2004; Brannon et

al. 2006). Thus, the ANS itself may be capable of implementing the entire algorithm

expressed in (11b). A first step in evaluating whether this is the case is to see if

performance on each Trial Type can be fit by a computational model of the ANS.

See Appendix 1 for more details.

We rely on a classic psychophysical model that has been used by labs other than

our own, indicating its acceptance in the literature (e.g., Pica et al. 2004). The

average percent correct at each ratio across subjects is modeled for each trial type as

a function of increasing Weber ratio (larger set/smaller set, or n2/n1). Each num-

erosity is represented as a Gaussian random variable (i.e., X2 & X1) with means n2

& n1 and standard deviations equal to the critical Weber fraction (w) * n. Sub-

tracting the Gaussian for the smaller set from the larger returns a new Gaussian that

has a mean of n2–n1 and a standard deviation of w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n12 þ n22
p

(simply the dif-

ference of two Gaussian random variables). Percent correct is then equal to the area

under the resulting Gaussian curve which is to the right of zero, computed as (13):

ð13Þ 1

2
erfc

n1 � n2
ffiffiffi

2
p

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
1 þ n2

2

p

 !

The one free parameter in this equation is the Weber fraction (w). This parameter

determines percent correct for every Weber ratio (n2/n1). The mean of subject

means for percent correct at each of the five ratio bins and the theoretically

determined origin of the function (50% correct at Ratio = 1, where the number of

6 Throughout the analyses, ratios will be displayed as the Weber ratio between the two sets (Weber ratio

= bigger #/smaller #). This is important as it allows performance to be fit by a psychophysical model of

the ANS.
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blue dots and nonblue dots would in fact be identical) were fit using this psycho-

physical model. As can be seen in Fig. 4, the fits for all four trial types (2–5 colors)

fell directly on top of one another. Table 1 summarizes the R2 values, the estimated

Weber fraction, and the nearest whole-number translation of this fraction for each fit.

These R2 values suggest agreement between the psychophysical model of the

ANS and subjects’ performance in the experimental task (R2 values > .9). The

Weber fraction on these trial types confirms our earlier result that participants rely

on the representations of the ANS to evaluate most.
The Weber fraction is expected to be approximately .11 to .14 for adults in

number discrimination tasks, i.e. more-tasks, (Halberda and Feigenson 2008; Pica

et al. 2004) and to range from .14 to .35 in adults when subjects are translating these

representations into whole-number values (Halberda et al. 2006; Whalen et al.

1999). Our estimate of a Weber fraction of approximately .3 for all four trial types

suggests that subjects may be translating the representations of the ANS into whole

number values before evaluating most (see also Pietroski et al. 2009). That is, shown

an array of 28 total dots, 16 of which are blue, these subjects may activate the ANS

representations for 28 and 16, perform an ANS subtraction to represent the 12

nonblue dots, and translate the values 12 and 16 into whole-number estimates twelve
and sixteen for purposes of evaluating most. Another possibility is that the entire

computation is done within the ANS without ever translating into whole-number

values. In such a model, the dual operations of subtraction and ordinal comparison

may each contribute to determining the Weber fraction. Further work will be

necessary to tease these two possibilities apart.

6 General discussion

We found no change in participants’ ability to evaluate most as a function of the

heterogeneity of a display. Rather, participants’ performance at evaluating most for a

wide range of ratios across all trial types was best fit by a model of the ANS whereby

participants rely on a subtraction to compute the cardinalities of the sets to be com-

pared. These results inform our understanding of how the meaning of most interfaces

with the psychological mechanisms that provide numerical content, and lays the

groundwork for further investigation of the interface between language and number.

More generally, our research addresses the relation between the units of meaning

out of which truth conditions are built and the verification procedures that determine

truth values. We have argued that semantic representations can be transparently

mapped into verification procedures. When two equivalent semantic representations

are being compared, as with the truth-conditionally equivalent (11a) and (11b),

repeated here, examining the psychological processes implied by directly imple-

menting these meanings as verification procedures can provide decisive evidence

for distinguishing them.

(11) a. >(|DOT ˙ BLUE|, |DOT ) BLUE|)

b. >(|DOT ˙ BLUE|, |DOT| ) |DOT ˙ BLUE|)
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Although these alternatives describe the same truth conditions, the psychological

mechanisms required to implement them transparently are quite distinct. Whereas

(11b) can be computed across all possible dot-flashing contexts using only the

information provided directly by the visual system in concert with the ANS, (11a) is

more psychologically brittle. Because it asks for information that cannot be directly

provided by the visual system, it requires a context-driven transformation, identi-

fying the set(s) in the context (e.g., (14)) that are appropriate redescriptions of the

set of nonblue dots.

(14) >(|DOT ˙ BLUE|, |DOT ˙ RED| + |DOT ˙ YELLOW|)

While such a transformation allows for accurate verification in contexts con-

taining less than three colors of dots, this transformation would be less effective in

contexts containing more than three colors of dots. However, as we have seen, the

number of colors of dots played no role in explaining participants’ most judgments,

casting doubt on the hypothesis that they use a verification procedure based on (11a)

in any context.

What may be surprising to consider, however, is that, in the context of only blue

dots and dots of one other color (i.e., a 2-color trial), the expression in (11a)/(14)

would lead to more accurate performance in evaluating most than the expression in

(11b). Specifically, with only two colors present in the array, (11a)/(14) is a more

accurate verification procedure within the ANS than (11b).

This last point requires elaboration. Various studies have demonstrated that

adults can rely on the ANS to make ordinal judgments (more/less) between two sets

whether they are presented serially or in parallel (Dehaene 1997). In all cases, the

estimated Weber fraction for adults is considerably better than the 3:4 value we

found here for all trial types. Typically, the Weber fraction for adults is closer to 7:8

(Dehaene 1997) and may be as high as 9:10 (Halberda and Feigenson 2008; Piazza

et al. 2003), and children as young as 4 years have a Weber fraction of at least 3:4

(Halberda and Feigenson 2008). For this reason, if participants had simply selected

the set serving as the first argument of the > relation (e.g., the blue dots) and the set

serving as the second argument (e.g., yellow dots) directly on a 2-color trial and

compared these using the ANS, as previous work has demonstrated they can, we

would have observed a Weber fraction of at least 7:8. That participants’ perfor-

mance is far below this suggests that they are relying on a representation of most
like the expression in (11b), even when there are more accurate, truth-conditionally

equivalent, methods of verification available (i.e., (11a)/(14)).

This last observation provides the strongest evidence for the Interface Trans-

parency Thesis introduced in Sect. 3 above. Even when there is a more precise

algorithm that is native to the interface system, semantic judgments are driven by

algorithms that transparently compute the relation expressed in the meaning. The

semantic representation of most (i.e., its canonical specification) thus plays a

determinative role in identifying the verification procedure for a sentence containing

that word, at least when a transparent verification procedure is available. The fact

that participants never employ the verification procedure most naturally associated

with the canonical specification in (11a), even when that verification procedure is
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positively invited by the context and would yield the most accurate estimate of the

truth of the expression, provides compelling evidence against (11a) being the

meaning of the expression.7

Of course, the fact that the verification procedure reflects precisely the structure

of the meaning has a natural explanation in the set of circumstances in which most
applies. The second argument of the > relation is not guaranteed by the world to

have only one easily selectable property (e.g., yellowness), and, because of the 3-set

limit on parallel enumeration (Halberda et al. 2006), the limitations of the psy-

chological machinery would lead to drastically reduced performance as the heter-

ogeneity of the remainder set increased. Thus, the most general verification

procedure would be one that can apply independent of whether such a property

exists in a particular circumstance. A verification procedure whose applicability

varied as a function of contingent properties of the world would be less reliable than

one which could apply across all circumstances.

Finally, we wish to reiterate that treating semantic hypotheses as psychological

hypotheses makes available certain kinds of evidence that are unavailable to

semantic theories concerned only with compositionally determined truth conditions,

and moreover, that such evidence enables us to distinguish otherwise equivalent

hypotheses. We have argued that semantic hypotheses are best viewed as psycho-

logical hypotheses about the mental representations involved in defining the truth

conditions for a sentence. These representations provide canonical specifications of

meaning that can be mapped transparently to verification procedures involving the

integration of linguistic information with information from adjacent cognitive

systems. Knowing what information these systems can and cannot provide places

constraints on the verification procedures. And these constraints can, in turn, be used

to examine the semantic representations themselves, enabling us to distinguish

semantic hypotheses that are otherwise equivalent. We believe that this approach

has so far been fruitful for distinguishing hypotheses about the meaning of most, but

we view the demonstration that such questions can be precisely asked and plausibly

answered as the more significant contribution of this work, opening the door for

progress in the field of psychosemantics.
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Appendix 1: A tutorial on Weber fractions and the ANS

Here we describe the representations of the ANS, discrimination within the ANS,

and the role of the Weber fraction in modeling performance in tasks that engage the

ANS.

7 Other results suggest that the present 2-color results are not due to subjects ‘‘sticking with’’ a verifi-

cation procedure that will work for every trial type (e.g. 2–5 colors). Even when only 2-color trials are

presented, adult performance is consistent with the meaning expressed in (11b) and not with (11a)/(14)

(Pietroski et al. 2009).
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In modeling performance on tasks that engage the ANS, it is necessary first to

specify a model for the underlying approximate number representations. It is gen-

erally agreed that each numerosity is mentally represented by a distribution of

activation on an internal ‘‘number line.’’ These distributions are inherently noisy

and do not represent number exactly or discretely (e.g., Dehaene 1997; Gallistel and

Gelman 2000). The representations of numerosity on the mental number line are

often modeled as having linearly increasing means and linearly increasing standard

deviation (Gallistel and Gelman 2000). In Fig. 5a we have drawn idealized curves

which represent the ANS representations for numerosities 4–10 for an individual

with a Weber fraction of .17 (nearest whole number ratio of 6:7), where the Weber

fraction is a measure of the noisiness of the ANS representations (see below).

Consider these curves to represent the amount of activity generated in the mind by a

particular array of items in the world. An array of, e.g., six items will greatly

activate the ANS numerosity representation of six, but because these representations

are noisy this array will also activate representations of five, seven, etc. with the

amount of activation centered on six and gradually decreasing to either side of six.8

As the number of items in an array presented to a subject increases from 4 to 10, the

standard deviation of the Gaussian curve that represents the corresponding num-

erosity increases, leading to a flattening and spreading of the activation.
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8 We describe the representation this way simply for ease of understanding. Strictly speaking, the number

line of the ANS may be completely continuous and not have separate representations for, e.g., six items as

distinct from, e.g., 5.76 items, and the entire curve centered on six might be considered the representation

of six-ness.
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To give a visual depiction of how number discrimination is possible in the ANS,

consider the task of briefly presenting a subject with two arrays, e.g., five yellow

dots and six blue dots, and asking the subject to determine which array is greater in

number (Fig. 6a). The five yellow dots will activate the ANS curve representation of

five and the six blue dots will activate the ANS curve representation of six (the

subject uses attention to select which dots to send to the ANS for enumerating and

then stores and compares those numerosity representations bound to their respective

colors) (Fig. 6a,b).

An intuitive way to think about ordinal comparison within the ANS is to liken it

to a subtraction (this will be mathematically equivalent to other ways of making an

ordinal judgment within the ANS, and our use of subtraction here should be thought

of as one illustration among several mathematically equivalent ones). Imagine that

an operation within the ANS subtracts the smaller (i.e., yellow-five) representation

from the larger (i.e., blue-six) representation (Fig. 6b). Because the five and six
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representations are Gaussian curves, this subtraction results in a new Gaussian

representation of the difference, which is a Gaussian curve on the mental number

line that has a mean of one and a standard deviation of
p

(r52 + r62); thus, when

subtracting one Gaussian random variable from another (i.e., N6 – N5), the result is

a new Gaussian random variable with the mean at the difference (i.e., 6 – 5 ¼ 1) and

a variance that adds the variances of the original variables (i.e., r52 þ r62). This

results in a Gaussian curve that is centered on one, but that extends to both the left

and right of zero (Fig. 6c). One can think of zero as the demarcation line separating

evidence ‘‘for’’ and ‘‘against,’’ in that the area under the curve to the right of zero is

the portion of the resulting representation that correctly indicates that six is greater

than five, while the area under the curve to the left of zero is the portion of the

resulting representation that incorrectly indicates that five is greater than six. This

area to the left of zero results from the overlap between the original Gaussian

representations, five and six, that were being discriminated in which some of the

area of yellow-five is to the right (i.e., greater than) some of the area of blue-six
(Fig. 6b).

From this resulting representation, there are multiple ways a subject might make

a decision. Perhaps the simplest to consider is that, to give a discrete response, e.g.,

‘‘Yes, there are more blue dots than yellow dots,’’ the subject could draw a single

sample at random from this representation, and if it is to the left of zero respond,

‘‘There are more yellow dots,’’ and if it is to the right of zero respond, ‘‘There are

more blue dots’’ (Fig. 6c). In this way, the probability of the subject getting this trial

correct will depend on the relative area under the curve to the left and right of zero,
which is itself determined by the amount of overlap between the original Gaussian

representations for the numerosities being compared (i.e., five and six).

The more overlap there is between the two Gaussian representations being

compared, the less accurately they can be discriminated. Consider comparing a

subject’s performance on a 5-dots versus 6-dots trial to a trial involving 9 versus 10

dots. Using the curves in Fig. 5a as a guide, we see that the overlapping area for the

curves representing five and six is less than the overlapping area for the curves

representing nine and ten, because the curves flatten and spread as numerosity

increases. This means that it will be easier for the subject to tell the difference

between five and six than between nine and ten, i.e., the resulting Gaussian for the

subtraction will have more area to the right of zero for the subtraction of five from

six than for the subtraction of nine from ten. Across multiple trials the subject would

give more correct responses on the 5-versus 6-dots trials than the 9-versus 10-dot

trials. More generally, the linear increase in the standard deviation of the curves

representing the numerosities along the mental number line results in ratio-depen-

dent performance whereby the discriminability of two numerosities increases as the

ratio between them (e.g., bigger #/smaller #) increases. The spread of each num-

erosity representation in Fig. 5a from 4 to 10 is steadily wider than the numerosity

representation before it. This means that the discriminability of any two numeros-

ities is a smoothly varying function, dependent on the ratio between the two

numerosities to be discriminated. In theory, such discrimination is never perfect

because any two numerosities, no matter how distant from one another, will always

share some overlap. At the same time, discrimination will never be entirely
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impossible so long as the two numerosities are not identical. This is because any two

numerosities, no matter how close (e.g., 67 and 68), will always have some non-

overlapping area where the larger numerosity is detectably larger. Correct dis-

crimination may occur on only a small percentage of trials if the two sets are very

close in number, but it will never be impossible. This motivates the intuition that

percent correct in a dot discrimination task should be a smoothly increasing function

from a ratio of 1, where the number of yellow dots presented to the subject and the

number of blue dots presented are identical and there is therefore no correct answer, to

near-asymptotic performance (100% correct) when the ratio is large and therefore

easier. How rapidly performance rises from chance (50%) to near-asymptotic per-

formance (100%) is controlled by the subject’s Weber fraction, which tracks the

amount of spread in the subject’s underlying number line Gaussian curve represen-

tations and therefore the overlap between any two numerosities as a function of ratio.

In Fig. 5b we have drawn the expected percent correct for the task of determining

which array, blue or yellow, has more dots. This curve, derived from the psycho-

physical model of the ANS, is the expected pattern for the subject depicted in Fig. 5a,

whose Weber fraction (w) is .17. In Fig. 5b, we see the smooth increase in percent

correct discrimination from a ratio of 1, where the yellow and blue dots have the same

number, to near-asymptotic performance at a ratio of approximately 1.5 (e.g., a trial at

this ratio might involve six yellow dots versus nine blue dots).

The precision of the ANS varies across individuals, with some people having a

smaller Weber fraction (i.e., better performance and sharper Gaussian curves) and

others having a larger Weber fraction (i.e., poorer performance owing to wider,

noisier Gaussian curves) (Halberda et al. 2008). The Weber fraction indicates the

amount of spread in the underlying mental number line representations (Halberda, in

prep). In Fig. 7a we illustrate a subset of the idealized curves which represent the

underlying ANS representations for a subject whose Weber fraction is .17 (better

discrimination performance), and in Fig. 7b for a subject whose Weber fraction is .22

(poorer discrimination performance). Crucially, one can see that the subject in Fig. 7b

has a greater degree of overlap between the Gaussian curves than the subject in

Fig. 7a. It is this overlap that leads to difficulty in discriminating two stimuli that are

close in numerosity. The hypothetical subject in Fig. 7b would have poorer dis-

crimination in a dots discrimination task than the subject in Fig. 7a. In Fig. 7c we have

drawn the ideal performance for these two subjects across many trials in a discrim-

ination task.

Lastly, we consider the predicted curves for two of the algorithms discussed in

this paper. Consider again the sentence ‘Most of the dots are blue’. This statement

invites one to compare the cardinality of the blue dots to the cardinality of the

nonblue dots, as in (11). We specified two psychologically plausible ways of per-

forming this comparison. In (11b), the numerosity of the nonblue dots is computed

via a subtraction of the blue dots from the total number of dots. We noted that such

an operation is feasible on psychological grounds as infants and adults are capable

of retrieving the numerosity of the superset of all dots and the numerosity of the

blue dots from a single flash (Halberda et al. 2006; Zosh et al. under review). In

(12), the numerosity of the nonblue dots is computed via a context-dependent

summation of the cardinalities for the color subsets that make up the nonblue dots.
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We noted that such a computation is possible psychologically just so long as the

individual color subsets can be enumerated (i.e., for 3 or fewer color subsets).
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(11) a. >(|DOT ˙ BLUE|, |DOT – BLUE|)

b. >(|DOT ˙ BLUE|, |DOT| ) |DOT ˙ BLUE|)

(12) >(|DOT ˙ BLUE|, |DOT ˙ RED| + |DOT ˙ YELLOW|)

In (12), the observed Weber fraction will be lower than a simple comparison of two

sets. The subtraction in (11b) will add noise from the variance of the Gaussian

numerosity representations involved in the subtraction (e.g., note in the example

above, shown in Fig. 6a–c, how variances add in Gaussian subtraction within the

ANS). Both addition and subtraction lead to the addition of variance, but because

the numerosities involved in the addition (12) are different from those involved in

the subtraction (11b) these algorithms generate very specific and distinct predictions

for how performance on the dot discrimination task should change as a function of
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the number of color subsets in the display. In the experiment described in Sect. 5 we

saw that the performance of subjects conformed to the predictions of (11b). Here,

for the purposes of illustrating the value of the psychophysical model, we provide

the predictions in greater detail for the performance of subjects engaged in (i) a

simple comparison of two color subsets, (ii) the summation algorithm in (12) with

increasing numbers of colors, and (iii) the subtraction algorithm in (11b) with

increasing number of colors.

For all three computations, we will assume an ideal subject who has a Weber

fraction of .17 (Fig. 5a). The first case to consider is a simple discrimination of blue

versus yellow dots. As already described above, for a subject with an internal Weber

fraction of .17, performance on such a task will be a smooth increase from chance

(50%) to near-asymptotic performance (100%) as a function of increasing ratio (i.e.,

as the numbers of blue and yellow dots become more different). The steps under-

lying this process were displayed in Fig. 6. In Fig. 8a, we have reprinted the final

performance curve from Fig. 5b and superimposed on it the average behavioral

performance for each ratio from the actual subjects in the experiment (i.e., the

‘‘most’’ task) collapsed across all trials. In Fig. 8a we see that simple discrimination

of, e.g., blue dots versus nonblue dots of a single color (e.g., yellow) from a subject

with a Weber fraction of .17 (a reasonable estimate of adults’ internal Weber

fraction; see Halberda and Feigenson 2008; Ross and Burr 2010) predicts perfor-

mance that far exceeds what we observed in our experiment. This suggests that

adults are not directly enumerating the blue dots and the nonblue dots and per-

forming a simple discrimination on these two sets.

Second, for the case of a ‘‘sum the nonblue’’ algorithm as in (12), each added

addition in the second argument on the right side of the ‘>’ sign will, perhaps

counterintuitively, reduce the variance of the ‘‘nonblue’’ representation relative to

the simple discrimination in Fig. 8a. This is because in Gaussian random variable

addition and subtraction it is the variances that add, but for the ANS it is the

standard deviation of the representations that increases linearly with the mean. One

therefore arrives at a Gaussian representation with less error if one builds it through

addition than if one enumerates it directly in the ANS (e.g., the standard deviation of

the resulting Gaussian representation from an addition N7 + N5 is less than the

standard deviation of N12 enumerated directly by the ANS). As the number of color

subsets to be summed in the nonblue dots increases performance should improve
slightly from simple discrimination. For a 2-color trial (e.g., blue and yellow dots

only), the predicted performance from this algorithm is identical to a simple dis-

crimination of, e.g., blue and nonblue dots (Fig. 8b). For 3-color, 4-color, and

5-color trials (e.g., blue versus red + yellow + green + cyan), the variance will be

reduced by each addition, leading to a gradual increase in performance as a function

of the number of colors, so long as subjects can enumerate the color subsets

(Fig. 8b).

Another possible pattern that we discussed in Sect. 5.1 informed by research on

visual attention and working memory for multiple color subsets (Halberda et al.

2006), is that subjects would simply fail to enumerate all of the color subsets on

4-color and 5-color trials which would result in performance curves in Fig. 8b that

are radically different from those seen on 2-color and 3-color trials (e.g., good
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performance on 2-color trials and near-chance performance on 5-color trials).

Neither this pattern nor the improved performance displayed in Fig. 8b relative to

simple discrimination was observed in the behavior of subjects in the ‘‘most’’ task.

Third, for the case of a ‘‘subtraction algorithm’’ as in (11b), the superset of all

dots and the focused set of, e.g., blue dots will be selected on each trial and

enumerated irrespective of the number of colors involved in the display (for evi-

dence that the number of colors does not increase the variance of the numerosity

representations see Halberda et al. 2006). The subtraction involved in (11b) will add

a constant variance irrespective of the number of colors. This predicts poorer per-

formance than a simple discrimination of, e.g., blue and yellow dots (Fig. 8a
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compared to Fig. 8c), and it predicts that performance will remain at this suppressed

level on 3-color, 4-color, and 5-color trials with no change in performance as a

function of the number of colors in the display (Fig. 8c). This is what we observed

for the performance of subjects in our experiment (Fig. 8c). Note that the predicted

curves in Figure 8c, all falling directly atop each other, are for the subtraction

algorithm for a subject whose internal Weber fraction is .17. In the experimental

analysis presented in Sect. 5.7. we used the standard simple discrimination algo-

rithm (Fig. 8a) to fit performance and found an observed Weber fraction of

approximately .3. By assuming a subtraction algorithm (11b), we’ve fit performance

well with a predicted internal Weber fraction of .17 (Fig. 8c). That independent

methods suggest adults have an internal Weber fraction in the neighborhood of

.11–.2 (Cordes et al. 2007; Halberda et al. 2008; Izard and Dehaene 2008; Ross and

Burr 2010) lends further support for the modeled curves in Fig. 8c, and we believe

the subtraction algorithm that generates these predictions, as stated in (11b), is the

most likely source for the behavior we observed from subjects in the ‘‘most’’ task.

The psychophysical model of the ANS generates specific predictions for the

performance of subjects on a variety of dot discrimination trials. These predictions

allow a test of which algorithm most accurately describes the representations

engaged as adults assess the truth of a statement like ‘Most of the dots are blue’.
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