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The computational theory of mind—the idea that the 
mind is an information-processing system akin to a 
Turing machine—is perhaps the most widely influential 
and generative idea about cognition (Anderson, 2009; 
Fodor, 1975; Gallistel & King, 2009; Pylyshyn, 1984; 
Turing, 2009). But if thinking is computing, what are 
the data structures that support this process? In other 
words, what is the representational format that permits 
some computations to be executed with ease while 
making others less transparent?

The study of representational formats has been espe-
cially tractable in perceptual magnitudes (i.e., representa-
tions of space, time, and number; e.g., Dehaene & 
Brannon, 2010; Feigenson et al., 2004; Gallistel, 1989; 
Odic & Starr, 2018; Pylyshyn, 2003). Imagine seeing a 
collection of fruit in a bowl. Vision represents many 

perceptual features, such as the location of each piece 
of fruit, their varied colors and sizes, total number, aver-
age size, and so on. But in what format is this information 
stored? Under one popular model, perceptual magnitudes 
are represented on a linear scale, with imprecision scaling 
proportionally with the value (Brannon et  al., 2001; 
Gallistel, 2011; Gallistel & Gelman, 2000; Odic et  al., 
2016). For example, a series of neurons—each with a 
preferred value—collectively respond to the encoded 
value, with neurons further from the preferred line firing 
less, instantiating a tuning curve with scalar variability 

1223130 PSSXXX10.1177/09567976231223130Odic et al.Psychological Science
research-article2024

Corresponding Author:
Darko Odic, Department of Psychology, University of British 
Columbia 
Email: darko.odic@psych.ubc.ca

Observers Efficiently Extract the Minimal 
and Maximal Element in Perceptual 
Magnitude Sets: Evidence for a Bipartite 
Format

Darko Odic1 , Tyler Knowlton2, Alexis Wellwood3,  
Paul Pietroski4, Jeffrey Lidz5, and Justin Halbeda6

1Department of Psychology, University of British Columbia; 2Department of Psychology, University of  
Pennsylvania; 3School of Philosophy, University of Southern California; 4Department of Philosophy,  
Rutgers University; 5Department of Linguistics, University of Maryland, College Park; and 6Psychological and  
Brain Sciences, Johns Hopkins University

Abstract
The mind represents abstract magnitude information, including time, space, and number, but in what format is this 
information stored? We show support for the bipartite format of perceptual magnitudes, in which the measured 
value on a dimension is scaled to the dynamic range of the input, leading to a privileged status for values at the 
lowest and highest end of the range. In six experiments with college undergraduates, we show that observers are 
faster and more accurate to find the endpoints (i.e., the minimum and maximum) than any of the inner values, even 
as the number of items increases beyond visual short-term memory limits. Our results show that length, size, and 
number are represented in a dynamic format that allows for comparison-free sorting, with endpoints represented 
with an immediately accessible status, consistent with the bipartite model of perceptual magnitudes. We discuss the 
implications for theories of visual search and ensemble perception.
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(Dehaene et al., 2003; Halberda & Odic, 2014; Harvey 
et al., 2013). Although such a format permits arithmetic 
operations to be transparently carried over to perceptual 
magnitudes, the need for dedicated feature detectors 
imposes computational demands because of the high 
dynamic range that the physically limited brain can rep-
resent. Given the high dynamic range of most perceptual 
magnitudes (e.g., at extremes, perception can represent 
brightness from even a few photons all the way to the 
brightness of staring directly at the sun), such a coding 
scheme must allocate an unrealistically high amount of 
neuronal real estate to represent any value along that 
range (Ala-Laurila & Rieke, 2014).

A common revision to this model is to distribute the 
feature detectors logarithmically (Dehaene, 2003; 
Dehaene et al., 2008). Small numbers of items would 
then be represented by dedicated feature detectors with 
high precision, whereas higher numbers would lack 
dedicated feature detectors and would be decoded from 
the collective and noisy combination of many neurons, 
leading to imprecision. But this revision does not permit 
transparent arithmetic operations because a log format 
could not represent the value of zero and would treat 
addition and subtraction as multiplication and division 
(Gallistel, 2011).

Gallistel (2011) proposed a solution that maintains 
transparent arithmetic with adequate compression—a 
bipartite format that codes magnitudes in two bits: the 
value and the scale. The first bit of information is the 
measurement value falling on an arbitrary scale (e.g., a 
value between 0 and 1). The second is a scaling variable 
that is determined by estimating the dynamic range—the 
difference between the smallest and the largest value in 
the current environment. Consider how computers rep-
resent very large numbers using the scientific notation: 
5.1 × 10e10 is a bipartite format in which the exponent 
codes for the scale, whereas the other number specifies 
the interval (Gallistel, 2017). This allows the sensitivity 
of the internal representation to autoscale in accordance 
with the amount of information presented in the input, 
allowing for efficient storage over a wide dynamic range 
while maintaining transparent arithmetic operations 
over the stored values.

The bipartite model is theoretically appealing, but it 
has never been empirically tested in magnitude percep-
tion. We do so by investigating the identification of 
maximal and minimal elements in a set. Because the 
bipartite format’s autoscaling depends on the estimated 
dynamic range, it relies on the encoding of these end-
points with a high degree of precision; otherwise, it 
risks failing to appropriately scale the entire range of 
values. This implies that perceptual encoding mecha-
nisms that extract magnitudes should—in early percep-
tual stages—code for the minimal and maximal values 

with a uniquely privileged status because every other 
value is coded in relation to them.

Returning to our bowl-of-fruit example, how might 
the visual system represent which of the fruits is “the 
largest” or “the smallest”? Under many models of per-
ception and memory, this is a serial comparison prob-
lem: The observer must compare the size of each fruit 
to each other one through successive comparisons 
(Pashler & Badgio, 1985). This is analogous to how 
digital computers order values (e.g., the quicksort algo-
rithm; for extensive review, see Cormen et al., 2022) 
but necessitates a mathematical limit to its efficiency: 
The time and memory demands grow with the size of 
the list because more comparisons must be done, pre-
dicting more errors as the set size grows. An alternative 
algorithm comes from ensemble perception and pooled-
population normalization: Perception might preatten-
tively code for the typical value in the entire set 
represented on a linear/log scale, with items that are 
further from the mean popping out as potential outliers 
via a similarity metric (Haberman & Whitney, 2012; 
Utochkin et al., 2023).

The bipartite format makes different predictions from 
both of these accounts. Unlike the sorting algorithm, it 
avoids the efficiency problem because the very act of 
representing a perceptual magnitude requires first 
encoding the minimal and maximal elements with high 
precision so that other values can be represented in 
relationship to the range. Therefore, the maximal and 
minimal elements are represented “for free” and do not 
require comparisons to each other value. Observers 

Statement of Relevance

How is information stored in the mind? Much like 
computers can store information as integers, 
strings, or floating points, the format of our mind’s 
representations dictates how information is used. 
With a population of college undergraduates, we 
show that a set of representations—perceptual 
magnitudes, including length, size, and number—
are stored in a format that privileges endpoint 
values over inner ones. People can rapidly iden-
tify the maximal and minimal value in a set (e.g., 
find the longest or shortest line out of 11 hetero-
geneous options), even though they struggle to 
identify other members of the set (e.g., the third 
longest line). We propose that representations of 
perceptual magnitudes are in a bipartite format—
akin to scientific notation— and therefore “scale” 
the representational set by the minimal and maxi-
mal value that we are currently attending to.
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should therefore find these elements quickly and effi-
ciently at any set size, so long as crowding or other 
low-level performance issues are kept to a minimum. 
Inner values, on the other hand, such as the second or 
third largest fruit, are not represented with this privi-
leged status and would require successive comparisons, 
incurring a serial cost.

The bipartite format is also distinct from the similar-
ity-to-the-mean account. Extracting the mean value 
(e.g., the average length line) improves with set size 
(Utochkin et al., 2023), predicting higher precision for 
finding the endpoints at higher set sizes. If the individual 
items are also equally spaced from each other, then 
increasing the set size also increases the range, again 
predicting that the maximal and minimal identification 
should improve with set size. The bipartite format, on 
the other hand, represents the range independently from 
the mean: It codes values from the range inward, not 
from the mean outward. It therefore—again—predicts 
no effect of set size.

In six experiments, we tested these hypotheses 
across a range of dimensions (length, area, and num-
ber). The first four experiments presented here are 
identical except for the stimuli used, and for simplicity 
we report them together as a group, noting differences 
between them where relevant. Experiments 1 and 2 
examined performance on finding the longest and 
shortest lines in a set of five (Experiment 1) or seven 
(Experiment 2) lines. For Experiment 3, we asked par-
ticipants to find the biggest and smallest set of dots, 
always presenting five sets but varying the number of 
individual dots in each set from one to five. Experiment 
4 had participants find the most or least numerous set 
of dots. With the use of a within-subjects design, Exper-
iment 5 returned to length perception and tested set 
sizes of seven, nine, and 11 lines. Finally, Experiment 
6 controlled for a potential confound in the instructions 
provided to the participants.

Open Practices Statement

All experiments in this article were preregistered 
(https://aspredicted.org/sn9xs.pdf), and all methods, 
stimuli, programs, and data are available on the OSF at 
https://osf.io/k6fqt.

Experiments 1–4

Participants

On the basis of pilot data, we determined that a minimum 
of 30 participants was sufficient to achieve power = 
0.95 and α = 0.05. We preregistered participant exclu-
sions with replacements if they did not complete the 

entire experiment or had at-chance performance; we 
also removed trials for which participants’ response 
times (RTs) were ± 3 SDs from their own mean. Partici-
pants were undergraduate students at the University of 
British Columbia, and course credit was given for par-
ticipation. We did not collect demographic data on 
participants. Because we recruited participants online, 
we posted more sign-up slots than necessary to account 
for a higher rate of dropouts. In total we ended up 
collecting 36 participants for Experiment 1, 33 for 
Experiment 2, 57 for Experiment 3, and 39 for Experi-
ment 4. For the reported analysis and to follow our 
preregistration plan, we report only on the first 30 
nonexcluded participants in each experiment, but data 
for all other participants are available online, and all of 
our findings are replicated when the full sample is used 
for each experiment.

Participants signed up for a study via an institutional 
online sign-up sheet. During the first wave of recruit-
ment, participants were randomly assigned to either 
Experiment 1 (five lengths) or Experiment 2 (seven 
lengths). During the second wave of recruitment, par-
ticipants were all assigned to Experiment 3 (five single 
or average sizes), and during the final wave of recruit-
ment all participants were assigned to Experiment 4 
(five approximate numbers). These experiments were 
staggered for convenience given limitations of the insti-
tutional recruitment platform to test only one experi-
mental protocol at a time. All research was approved 
by the University of British Columbia Office of Research 
Ethics.

Method

The experiments were conducted online using the Pav-
lovia platform and PsychoPy Version 3 (Peirce et al., 
2019). The code and stimuli for all experiments are 
available at https://osf.io/k6fqt. Participants completed 
a consent form and then followed a link to complete 
the task on their own computers.

Experiment 1 stimuli and procedure. The stimuli in 
Experiment 1 consisted of five lines drawn on the screen. 
Each line was drawn in a different color (yellow, blue, 
orange, green, and purple) at 80% opacity to allow them 
to be visible even if they intersected, effectively resem-
bling pick-up sticks (lines were never permitted to nest 
within each other, however, because this would prevent 
object individuation). Because of variations in individual 
computers and screen resolutions during online testing, 
we report all values as a percentage of overall screen. To 
construct the sequence of lines, the longest line was first 
randomly chosen to be between 10% and 30% of the 
overall screen length (participants could therefore not 

https://aspredicted.org/sn9xs.pdf
https://osf.io/k6fqt
https://osf.io/k6fqt
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memorize a specific length as any of the targets and 
could identify them only relative to the other values). 
Each successive line would then be shorter by a constant 
ratio—either 5%, 10%, 25%, or 50% shorter (e.g., if the 
first line was 100 pixels in the 10% condition, the second 
would be 90 pixels long, the third 81 pixels, the fourth 72 
pixels, and so on). Because of this constant decrease in 
length, the middle line was the geometric average-length 
line in the set. Each line was placed in a random position 
within an invisible rectangular box bordering 80% of the 
screen on each side and was given a random orientation 
between 0° and 180°.

Before viewing the trial, participants were given a 
prompt asking them to identify the color of a specific 
line. In Experiment 1, participants were asked to identify 
the longest, second longest, third longest, second short-
est, and shortest lines. Once the participant was ready to 
begin the trial, they clicked anywhere with the mouse. 
The lines then appeared for 2,000 ms and were then 
replaced by a series of colored rectangles, each corre-
sponding to one of the colors presented during the previ-
ous trial. Participants clicked on the square they believed 
matched the color of the line they were asked to find.

The main dependent variables were accuracy (i.e., 
whether the participant selected the correct square) 
and RT (i.e., the time from stimulus offset to the click 
of the square). Each participant was asked about each 
ordinal position crossed with each ratio 10 times, yield-
ing 200 total trials in Experiment 1 (five positions × four 
ratios × 10 trials). After completing the task, participants 
were debriefed and given course credit for their 
participation.

Experiment 2 stimuli and procedure. The stimuli 
and procedure in Experiment 2 were identical to those in 
Experiment 1 except that we increased the number of 
lines to seven, introducing a black and a white line. Par-
ticipants were asked to identify the longest, second lon-
gest, third longest, fourth longest, third shortest, second 
shortest, and shortest lines. Each participant was asked 
about each ordinal position crossed with each ratio 10 
times, yielding 280 total trials (seven positions × four 
ratios × 10 trials).

Experiment 3 stimuli and procedure. The stimuli 
were sets of circles that were equal in number but varied 
in color, individual area, and cumulative area. Each set 
was drawn from a set of five colors (yellow, blue, red, 
green, and purple). As above, we report the units in over-
all percentage of the screen to account for variability in 
screen size resulting from online testing. The cumulative 
area of the circles varied from 0.04% to 1.5% of the over-
all screen, again preventing participants from being able 
to memorize a specific value as any of the targets. Once 

the cumulative area of the circles was determined, each 
individual circle in that set was varied up to ± 20% of the 
average size, creating variability among the circles so that 
no single item was sufficient to determine the size of the 
set as a whole but preserving the overall cumulative area. 
To construct the sequence of sizes, the largest set was 
first randomly chosen to be between 0.2% and 1.5% of 
the overall screen in cumulative area. Each successive set 
would then be smaller by a constant ratio matching that 
of Experiment 1—either 5%, 10%, 25%, or 50% smaller. 
We also varied the total number of circles in each set to 
be either one, three, or five, with all sets having the same 
number. As noted above, this allowed us to examine 
whether performance is different for finding the largest 
circle (individual size) versus the largest circles (cumula-
tive area). Each circle was placed in a random position 
within an invisible rectangular box bordering 80% of the 
screen on each side, and they were not segregated into 
sets by color. The circles were not allowed to overlap.

Before viewing the trial, participants were asked to 
identify the color of a specific circle or set of circles. 
For the one-dot trials, we asked participants to identify 
the biggest, second biggest, third biggest, second small-
est, and smallest dots; for trials with three or five dots 
per set, we asked participants to identify the biggest, 
second biggest, third biggest, second smallest, and 
smallest dots. Once participants were ready to begin 
the trial, they clicked anywhere with the mouse. As in 
Experiment 1, the circles then appeared for a total of 
2,000 ms, and participants then clicked on the rectan-
gular box they believed matched the color they were 
asked to find. Once again, the key dependent variables 
were accuracy and RT, and participants completed 200 
total trials.

Experiment 4 stimuli and procedure. The stimuli 
were colored dots spatially separated into five groups 
that varied in color (yellow, blue, red, green, and purple) 
and number. The smallest set of dots could have four 
dots, and the largest set of dots could have 40 dots (this 
was effectively the largest range we could make to fit the 
total number of dots on the screen). Each dot took 
approximately 0.05% of the overall screen size but varied 
randomly ± 20% to introduce some variability. To con-
struct the sequence of numbers, the most numerous set 
was first randomly chosen to be between 20 and 40 dots 
to prevent memorization of target values, and each suc-
cessive set would then be reduced in number by a con-
stant ratio matching that of Experiment 1—either 5%, 
10%, 25%, or 50% fewer. We clustered the dots of the 
same set together because we found that observers could 
not otherwise clearly identify the sets by color alone if 
they were fully intermixed. Because average item size 
was equivalent across the sets, item size was not a cue to 
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the correct answer; similarly, because each set was drawn 
within an equally sized area, convex hull was not a cue 
to the answer (although density positively covaried with 
number). For our current research questions, participants 
who answered on the basis of density (or any other fea-
ture of these collections) would be just as interesting as 
responses based on number because these alternative 
dimensions would also be codable on a bipartite format.

Before viewing the trial, participants were asked to 
identify the set with the most, second most, third most, 
second fewest, and fewest dots. Once participants were 
ready to begin the trial, they clicked anywhere with the 
mouse. As in Experiment 1, the stimuli then appeared 
for a total of 2,000 ms, and participants then clicked on 
the square they believed matched the color they were 
asked to find. Once again, the key dependent variable 
was accuracy and RT, and participants completed 200 
total trials.

Analysis plan

Our primary analysis of interest was a comparison of 
accuracy and RT across probed positions. The main 
prediction of the bipartite account is that the outer 
positions—the minimum and the maximum—should 
have privileged status, so questions probing them 
should be high in accuracy and low in RT, with perfor-
mance getting worse with each successive position 
away from the edges. The bipartite account also pre-
dicts that there should be no effect of set size. On the 
other hand, the “sorting” account predicts that partici-
pants should—especially given higher memory con-
straints—perform at chance or equivalently poorly for 
all positions because identifying any position requires 
a minimum of four to six successive comparisons, and 
the similarity-to-the-mean account predicts that perfor-
mance should improve with higher set sizes. We made 
no predictions about differences across the three 
dimensions tested (length, area, and number) and 
expected the patterns to hold across all of them given 
that perceptual magnitudes are theorized to be coded 
in a similar format (Cantlon et  al., 2009; Dehaene & 
Brannon, 2010; Walsh, 2003). We also made no predic-
tions about the effect of ratio because smaller ratios 
would naturally make all nearby values more confus-
able (e.g., at the smallest ratio, the longest and the 
second longest line would be similar enough in length 
that quickly identifying the color may be more difficult 
under time pressure).

Results

Experiment 1. A 5 (Position) × 4 (Ratio) repeated-mea-
sures analysis of variance (ANOVA) with accuracy as the 

dependent variable showed a significant main effect of 
position, F(4, 116) = 68.85, p < .001, f = 1.54, a significant 
main effect of ratio, F(3, 87) = 208.67, p < .001, f = 2.68, 
and a significant interaction, F(12, 348) = 4.07, p < .001, 
f = 0.37. As can be seen in Figure 1, participants per-
formed above chance at all positions but were especially 
excellent at finding the longest and shortest line in the set 
at any ratio, with a serial drop-off in performance with 
each line as they approached the middle (i.e., the third 
longest line). Tukey’s honestly significant difference 
(HSD) tests revealed significant differences between all 
pairwise positions (all ps < .001) except Position 2 versus 
Position 3, t(116) = 2.28, p = .16, Position 2 versus Posi-
tion 4, t(116) = .574, p = .98, and Position 3 versus Posi-
tion 4, t(116) = −1.712, p = .43. Although the bipartite 
format does not predict the significant difference between 
Positions 1 and 5 (i.e., longest vs. shortest), there is a 
long-standing finding that negative poles are slower and 
less accurate than positive ones (Klatzky et  al., 1973; 
Odic et al., 2013). We return to this issue in the General 
Discussion section because we observed this significant 
difference only between the minimum and the maximum 
in Experiment 1.

Performance decreased linearly with ratio, with the 
worst performance at 5% difference, M = 37.4%, 95% 
confidence interval (CI) = [32.4, 42.4], and the best 
performance at 50% difference, M = 84.0%, 95% CI = 
[79.0, 89.0]. The significant interaction resulted primar-
ily from the general flattening of performance as the 
ratio became harder. For example, at a difference of 
5%, we found significant differences only between Posi-
tion 1 versus Position 2, t(116) = 3.81, p = .002, Position 
1 versus Position 3, t(116) = 4.77, p < .001, and Position 
1 versus Position 4, t(116) = 3.22, p = .012.

This pattern of performance was not driven by a 
speed-accuracy trade-off: A 5 (Position) × 4 (Ratio) 
repeated-measures ANOVA with RT as the dependent 
variable showed a significant main effect of position, 
F(4, 116) = 26.22, p < .001, f = 0.95, a significant main 
effect of ratio, F(3, 87) = 54.17, p < .001, f = 1.37, and 
a significant interaction, F(12, 348) = 2.091, p = .017,  
f = 0.27, with participants faster to find the shortest and 
longest lines, especially at the easiest ratios. In other 
words, participants were most accurate and fastest for 
finding the longest and shortest lines and showed a 
progressive decrease in accuracy and increase in RT 
with each successive position.

Experiment 2. A 7 (Position) × 4 (Ratio) repeated-mea-
sures ANOVA with accuracy as the dependent variable 
showed a significant main effect of position, F(6, 174) = 
111.0, p < .001, f = 1.96, a significant main effect of ratio, 
F(3, 87) = 214.6, p < .001, f = 2.72, and a significant inter-
action, F(18, 522) = 5.55, p < .001, f = 0.44. Performance 
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was again overall best for the longest and shortest posi-
tions, with a successive decrease in performance toward 
the middle position. Tukey’s HSD tests revealed signifi-
cant differences between all pairwise positions (all ps < 
.02) except Position 1 versus Position 7, t(174) = 2.05, p = 
.38, Position 3 versus Position 5, t(174) = 1.621, p = .662, 
and Position 4 versus Position 5, t(174) = −1.897, p = .48. 
Performance decreased linearly with ratio, with the worst 
performance at 5% difference, M = 23.6%, 95% CI = [18.9, 
28.3], and the best performance at 50% difference, M = 
73.1%, 95% CI = [68.4, 77.8]. Even at this level of difficulty, 
however, performance was above chance. As in Experi-
ment 1, the significant interaction resulted primarily from 
participants having difficulty identifying the ordinal posi-
tion of any line as the ratio became harder (Fig. 1).

We again did not find the advantage for the outer 
positions to be a speed-accuracy trade-off. A 7 (Posi-
tion) × 4 (Ratio) repeated-measures ANOVA with RT as 
the dependent variable showed a significant main effect 
of position, F(6, 174) = 2.985, p = .008, f = 0.32, a sig-
nificant main effect of ratio, F(3, 87) = 6.02, p < .001, f = 
0.46, and a nonsignificant interaction, F(18, 522) = 
0.747, p = .763, f = 0.16, with participants again faster 
to find the shortest and longest lines.

Finally, we examined whether the increase in the 
number of lines between Experiments 1 and 2 produced 
any change in accuracy for the longest and shortest 
lines (we did not compare the inner positions because 
these differed across the two experiments). A 2 (Experi-
ment) × 2 (Position) mixed-measure ANOVA showed 
no main effect of experiment, F(1, 58) = 1.597, p = .21, 
f = 0.17, a significant main effect of position, F(1, 58) = 
43.54, p < .001, f = 0.87, and a significant interaction, 
F(1, 58) = 4.71, p = .034, f = 0.28. The interaction, how-
ever, was primarily driven by the lack of difference 
between the longest and shortest lines in Experiment 
2 and the presence of that difference in Experiment 1. 
Indeed, there was no significant difference in accuracy 
between finding the longest line across the two experi-
ments, t(72) = 1.91, p = .23, or for finding the shortest 
line, t(72) = 0.479, p = .96. Therefore, the increase in 
the number of lines from five to seven did not affect 
performance for the two outer positions—exactly as 
expected from the bipartite format but contrary to both 
an item-based sorting mechanism (which would have 
required additional comparisons given seven as 
opposed to five lines) and the comparison to the mean 
mechanism (which would have predicted better perfor-
mance with seven lines because the longest and short-
est lines are further away from the mean).

Experiment 3. A 7 (Position) × 4 (Ratio) × 3 (Dots in 
Set) repeated-measures ANOVA with accuracy as the 
dependent variable showed a significant main effect of 

position, F(4, 116) = 102.60, p < .001, f = 1.88, a significant 
main effect of ratio, F(3, 87) = 194.3, p < .001, f = 2.59, a 
significant main effect of dots in set, F(2, 58) = 15.32, p < 
.001, f = 0.73, a significant Position × Ratio interaction, 
F(12, 348) = 6.28, p < .001, f = 0.47, a significant Position × 
Dots in Set interaction, F(8, 232) = 6.54, p < .001, f = 0.47, 
a significant Ratio × Dots in Set interaction, F(6, 174) = 
4.824, p < .001, f = 0.41, and a significant three-way inter-
action, F(24, 696) = 3.575, p < .001, f = 0.35.

As with length, we found that performance was again 
overall best for the biggest and smallest positions, with 
a successive decrease in performance toward the mid-
dle position. Tukey’s HSD tests revealed significant dif-
ferences between all pairwise positions (all ps < .001) 
except Position 1 versus Position 5, t(116) = −1.18, p = 
.80, and Position 2 versus Position 4, t(116) = 1.258, p = 
.717. Performance decreased linearly with ratio, with 
the worst performance at 5% difference, M = 33.2%, 
95% CI = [29.8, 36.5], and best performance at 50% dif-
ference, M = 73.5%, 95% CI = [70.2, 76.9]. Once again, 
even the worst-performing condition was above chance. 
We found better performance overall when each set 
consisted of a single dot, M = 57.8%, 95% CI = [54.8, 
60.8], than with three dots, M = 50.6%, 95% CI = [47.5, 
53.6], or five dots, M = 50.4%, 95% CI = [47.4, 53.5], and, 
as in earlier experiments, performance flattened as the 
ratio became more difficult. Most importantly, we found 
an advantage for the biggest and smallest position at 
every ratio and with any number of dots, showing that 
the observed advantage for the endpoints generalizes 
from individuals to ensembles.

We found the same pattern for RTs: A 7 (Position) × 
4 (Ratio) × 3 (Dots in Set) repeated-measures ANOVA 
with RT as the dependent variable showed a significant 
main effect of position, F(4, 116) = 21.17, p = < .001, f = 
0.87, a significant main effect of ratio, F(3, 87) = 15.73, 
p < .001, f = 0.74, a significant main effect of dots in set, 
F(2, 58) = 5.29, p = .008, f = 0.43, a significant Position × 
Ratio interaction, F(12, 348) = 2.046, p = .012, f = 0.27, 
a nonsignificant Position × Dots in Set interaction, F(8, 
232) = 1.232, p = .281, f = 0.21, a nonsignificant Ratio × 
Dots in Set interaction, F(6, 174) = 0.456, p = .84, f = 
0.13, and a nonsignificant three-way interaction, F(24, 
696) = 1.357, p = .12, f = 0.22. Performance was fastest 
for the biggest and smallest positions compared with the 
inner positions, with no significant difference between 
the outer two positions, t(116) = −1.417, p = .62, and was 
slightly faster for sets with one dot, M = 970, SE = 30.60, 
95% CI = [907, 1,032], compared with three dots, M = 
1,015, SE = 30.6, 95% CI = [953, 1,077], and five dots, 
M = 1,004, SE = 30.6, 95% CI = 942, 1,066].

Experiment 4. A 7 (Position) × 4 (Ratio) repeated-mea-
sures ANOVA with accuracy as the dependent variable 
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showed a significant main effect of position, F(4, 116) = 
91.49, p < .001, f = 1.78, a significant main effect of ratio, 
F(3, 87) = 249.0, p < .001, f = 2.93, and a significant inter-
action, F(12, 348) = 6.159, p < .001, f = 0.46. Performance 
overall was again best for the most and the fewest posi-
tions, with a successive decrease in performance toward 
the middle position. Tukey’s HSD tests revealed signifi-
cant differences between all pairwise positions (all ps < 
.04) except Position 1 versus Position 5, t(116) = 1.167, p = 
.77, Position 2 versus Position 4, t(116) = 1.357, p = .65, 
and Position 3 versus Position 4, t(116) = −1.479, p = .578. 
Performance decreased linearly with ratio, with the worst 
performance at 5% difference, M = 30.60%, 95% CI = [26.6, 
36.6], and best performance at 50% difference, M = 73.4%, 
95% CI = [69.3, 77.4]. Once again, performance on even 
the worst-performing question was above chance. As in 
Experiment 1, the significant interaction resulted primarily 
from participants having difficulty identifying the ordinal 
position of any line as the ratio became harder (Fig. 1).

We again did not find the advantage for the outer 
positions to be a speed-accuracy trade-off. A 7 (Posi-
tion) × 4 (Ratio) repeated-measures ANOVA with RT as 
the dependent variable showed a significant main effect 
of position, F(4, 116) = 16.45, p < .001, f = 0.75, a non-
significant main effect of ratio, F(3, 87) = 1.752, p = .16, 
f = 0.25, and a nonsignificant interaction, F(12, 348) = 
1.421, p = .154, f = 0.22, with participants again faster 
to find the shortest and longest lines.

Discussion

In four experiments ranging across three dimensions 
(length, size, and number), across individual and 
ensemble perception, and across sets of five and 
seven—we found a consistent advantage for identifying 
the maximal and minimal element in an array and a 
steady decrease in performance, with each successive 
ordinal position away from the maximum and mini-
mum. Therefore, we have evidence that the endpoints 
of perceptual magnitudes are preferentially and effi-
ciently coded compared with other values.

These results broadly replicate patterns in visual 
searches showing an advantage for finding predefined 
targets (e.g., a 1- × 1-in. square) when those objects 
are also coincidentally the largest or smallest items in 
the set (e.g., Becker et al., 2013; Treisman & Gelade, 
1980; Wolfe, 2021). Unlike these past paradigms, (a) we 
did not have target values that could be preselected 
through attentional tuning because the value of the 
objects changed on every trial, (b) our paradigm was 
maximally heterogeneous in that every object was dis-
tinct from every other one, and (c) we found no cost 
in accuracy or RT for increasing the set size. Because 
the bipartite format is a theory of how features are 

represented, it can be considered an extension on work 
in visual search, providing a mechanism for why atten-
tion can be easily directed toward the endpoints of a 
scale—these values are inherently meaningful in the 
bipartite format because magnitude perception pro-
ceeds from identifying the range and then coding each 
other object within that scale.

Experiments 1 and 2 provide evidence against a set-
size effect, but they do so in a between-subjects design 
and only for set sizes of five and seven. To demonstrate 
that observers are not finding the endpoints from com-
paring each item to the mean value, we would ideally 
show that set-size effects do not occur even as we 
extend the range even further. In Experiment 5, there-
fore, we asked participants to find either the longest-, 
shortest-, or middle-length line in set sizes of seven, 
nine, and 11. Because the ratio between each succes-
sive line was held constant in our stimuli, the difference 
between the longest/shortest line and the mean-length 
line increased, on average, by a ratio of 1.7 at a set size 
of seven, 2.0 at a set size of nine, and 2.5 at a set size 
of 11. This stimulus structure also changed the stan-
dardized difference: The z score of the longest line 
increased with set size (from approximately 1.75 at a 
set size of seven to approximately 2.20 at a set size of 
11), whereas the shortest line decreased with set size 
(from approximately −1.00 to approximately −0.85). 
Models predicting that the longest/shortest line is found 
through a comparison to the mean—either via a ratio 
or a standardized-difference metric (Robitaille & Harris, 
2011; Utochkin et al., 2023)—would therefore predict 
a set-size effect. The bipartite format, on the other hand, 
predicts no effect of set size.

Experiment 5

Participants

We collected data from 32 participants, two of whom 
were excluded for not completing the task, leaving us 
with 30 participants in the final sample. Participants 
were recruited in the same manner as Experiments 1 
through 4 and tested online via PsychoPy Version 3. 
The method and data from all 30 participants are avail-
able online at https://osf.io/k6fqt.

Stimuli and procedure

To accommodate set sizes of up to 11 lines, we had to 
make two changes to the procedure. First, all of the 
lines were colored white on a gray background. After 
displaying the lines for 2,000 ms, the lines were replaced 
with small, identically sized dots at the center of each 
of the lines. Participants were asked to use the mouse 

https://osf.io/k6fqt
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and click on the dot that matched the position of the 
line they were asked to find (i.e., either the longest/
middle/shortest line). This method also allowed us to 
directly compare RTs across set sizes, which would 
have been difficult with the color task given that par-
ticipants would have to spend more time searching for 
the correctly colored box with higher set sizes. Second, 
to accommodate the higher number of trials partici-
pants needed to complete, we set the ratio of every 
trial to 1.20. As discussed above, this stimulus setup 
implies that the endpoints increasingly diverge from 
the mean as the set size increases.

At the start of each trial, participants were asked to 
search for either the longest, middle, or shortest line. 
After pushing a button to start, they would see a display 
of either seven, nine, or 11 lines on the screen, followed 
by a replacement by dots that they could click on. 
Participants completed 3 (Position) × 3 (Set Size) × 23 
repetitions for a total of 207 trials.

Results

A Position × Set Size repeated-measures ANOVA with 
accuracy as the dependent variable showed a significant 
main effect of position, F(2, 58) = 517.05, p < .001, f = 
4.22, a marginal effect of set size, F(2, 58) = 3.09, p = 
.053, f = 0.33, and a significant Position × Set Size inter-
action, F(4, 116) = 6.70, p < .001, f = 0.48. As seen in 
Figure 2, post hoc contrasts reveal that the main effect 
of question was driven by a significant difference 
between the longest and middle positions, t(58) = 28.64, 
p <.001, and shortest and middle positions, t(58) = 
−26.98, p < .001, and no difference between the longest 
and shortest positions, t(58) = 1.67, p = .23. The signifi-
cant interaction was driven by a linear trend for perfor-
mance getting worse with set size for the middle position, 
β = −2.14, 95% CI = [−3.24, −1.04], in contrast to flat 

slopes with set size for the longest, β = 0.76, 95% CI = 
[−0.34, 1.86], and shortest, β = −0.58, 95% CI = [−1.68, 
0.52], positions. The negative slope for the middle posi-
tion replicates work in visual search showing that end-
point targets are easier to find than middle targets 
(Treisman & Gelade, 1980; Wolfe, 2021). The lack of any 
such effects for the endpoints shows a clear violation of 
the comparison from the mean models, which predict 
better performance with increasing set size.

We also examined RTs. A Position × Set Size repeated-
measures ANOVA with RT as the dependent variable 
showed a significant main effect of position, F(2, 58) = 
104.0, p < .001, f = 1.89, and no effect of set size, F(2, 
58) = 0.02, p = .98, f = 0.02, or a significant Position × 
Set Size interaction, F(4, 116) = 1.81, p = .13, f = 0.25. 
The significant main effect was driven by the middle 
position being significantly slower than the longest 
position, t(58) = −9.97, p < .001, which was in turn 
slower than the shortest position, t(58) = −4.04, p < .001. 
We found no significant set-size effects or interactions, 
suggesting that neither a serial nor capacity-limited  
parallel search model could account for our data.

Discussion

Recall that participants in Experiments 1 through 4 were 
instructed to find a position that was X places from the 
maximal or minimal element (e.g., third longest line). 
Thus, an alternative explanation might suggest that our 
instructions signaled to them to first identify the maxi-
mal or minimal element and then proceed from there 
to the asked position, forcing them to represent the 
endpoints with additional attention or precision to 
begin the search process for the other values. This pos-
sibility can be easily tested by changing the instructions 
and instead asking participants to find the X position 
from the middle (e.g., “Which line is second above the 
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middle line?”). If the position named in the instructions 
provides an anchor value from which comparisons 
begin, then we should now find that participants are 
best with the middle position and progressively worse 
as they approach the outer edges.

Experiment 6

Participants

As with Experiments 1 through 4, we aimed to recruit 
30 participants. We ended with a sample of 32 partici-
pants, two of whom were excluded for not completing 
the task, leaving us with 30 participants in the final 
sample. Unlike the first four experiments, all partici-
pants were recruited via Amazon Mechanical Turk. 
Recruitment criteria included being U.S. citizens, having 
completed at least 100 human-intelligence tasks (HITs), 
and having at least a 95% approval rating for completed 
HITs. The data from all 30 participants is available 
online at https://osf.io/k6fqt.

Stimuli and procedure

The stimuli were identical to those in Experiment 2—
sets of seven colored lines presented on the screen for 
2,000 ms followed by a series of colored squares that 
participants would click to indicate the correct answer. 
The only difference was that the software used was 
hosted on Heroku instead of Pavlovia (note that this 
changed the data format uploaded online for this exper-
iment compared with the others) and that participants 
were asked a different set of questions: “Which line is 
the third/second/first above/below the middle?” or 
“Which line is the middle?” The key dependent vari-
ables were accuracy and RT, and participants completed 
200 total trials.

Results

A 7 (Position) × 4 (Ratio) repeated-measures ANOVA 
with accuracy as the dependent variable showed a sig-
nificant main effect of position, F(6, 174) = 16.78, p < 
.001, f = 0.76, a significant main effect of ratio, F(3, 87) = 
7.04, p < .001, f = 0.49, and a significant interaction, 
F(18, 522) = 3.127, p < .001, f = 0.33. As can be seen in 
Figure 3, overall performance was clearly worse, on 
average, than in Experiment 2 (we suspect because of 
testing on Mechanical Turk with a more heterogeneous 
sample), but there was still a clear benefit for the maxi-
mal and minimal positions, with a successive decrease 
in performance toward the middle position, even 
though the middle question was the linguistic anchor. 
The most relevant finding for our hypothesis was that 
there were significant differences for all pairwise com-
parisons involving the maximal and minimal positions 
(all ps < .03) except for Position 1 versus Position 7, 
t(174) = 2.622, p = .13, and Position 2 versus Position 
7, t(174) = −0.558, p = .99; none of the inner positions 
were significantly different from each other. Perfor-
mance was lower at 5% difference, M = 21.2%, 95%  
CI = [15.0, 27.5], but similar at the other three ratios. 
The significant interaction again resulted from partici-
pants having difficulty identifying the ordinal position 
of any line as the ratio became harder (Fig. 3).

A 7 (Position) × 4 (Ratio) repeated-measures ANOVA 
with RT as the dependent variable showed a significant 
main effect of position, F(6, 174) = 16.78, p < .001, f = 
0.76, a significant main effect of ratio, F(3, 87) = 7.04, 
p < .001, f = 0.49, and a significant interaction, F(18, 
522) = 3.127, p < .001, f = 0.33. There was still an RT 
advantage for the outer-edge items; however, unlike 
Experiment 2, we also found faster performance for the 
middle position (Fig. 3). Therefore, although the lin-
guistic anchor did not have an effect on accuracy, it did 
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have an effect on RTs; critically, however, the advantage 
for the outer-edge items was still preserved for both 
accuracy and RT.

General Discussion

In six experiments, we demonstrated that (a) partici-
pants can easily and quickly identify the endpoint  
elements in a set for length, size, and number repre-
sentations, especially when compared with the inner 
ordinal positions (Experiments 1–6); (b) participants’ 
ability to find the maximal and minimal element was 
not affected by increasing the number of sets (Experi-
ments 1, 2, and 5) or by increasing the number of items 
within a set (Experiments 3 and 4); and (c) these find-
ings did not result from alternative explanations such 
as a speed-accuracy trade-off (Experiments 1–4) or the 
linguistic anchor provided in the instructions (Experi-
ment 6). Our results show that participants can identify 
the endpoints in a set of perceptual magnitude values 
without sorting because such an algorithm would pre-
dict a decrease in performance as the number of com-
parisons grew (Pashler & Badgio, 1985). They also show 
that participants can identify the endpoints without 
relying on a similarity metric that compares each item 
to the mean value because the distance between the 
endpoints and the mean (either in ratio or standardized-
difference space) did not improve performance (Experi-
ment 5). Instead, perceptual magnitude endpoint values 
are privileged and easily extracted from the visual scene 
even when not directly named (Experiment 6). The 
inner values, however, show a cost that is consistent 
with successive comparison, using something akin to 
the quicksort algorithm.

Our results are consistent with a representational 
format for perceptual magnitudes that privileges the 
endpoints over the inner values. Neither the log nor 
the linear-coding models predict this pattern because 
they posit no reason to privilege the endpoints over 
other values: Any value represented on these scales is 
equal to any other, and—especially when all the values 
are highly heterogeneous—any ordinal position must 
be identified through an algorithm akin to successive 
comparison. Our results are most consistent with the 
bipartite model of perceptual magnitudes proposed by 
Gallistel (2011), who coded for magnitudes on an arbi-
trary scale that was scaled according to the dynamic 
range of the input. Under this model, each value is 
represented relative to the endpoints (i.e., autoscaled 
to the minimum/maximum), and the coding of values 
begins from the range inward.

Our results are consistent with and extend work by 
Pashler and Badgio (1985), who found that participants 
can identify the highest Arabic digit in sets of two to 

six digits. This finding was explained by a process that 
places Arabic digits on a mental number line followed 
by a search for the value that is “rightmost” on the line. 
Assuming—as has been shown in previous work—that 
Arabic digits are themselves automatically mapped to 
a perceptual number scale (Dehaene et al., 2003; Fias 
et al., 2003; Odic & Starr, 2018), our findings support 
and extend this prior work. Rather than assuming that 
the mental number line is infinite and that participants 
search for the rightmost position, autoscaling in the 
bipartite format predicts that participants should find 
the highest (or, although untested, the lowest) Arabic 
digit so long as the format is mapped to a bipartite 
perceptual magnitude. A prediction for future work 
would be that participants who either do not possess 
this mapping (e.g., young children) or have lost it (e.g., 
because of brain damage) should show the endpoint 
benefit for displays of dots but not for Arabic digits.

Our work also extends findings in visual search and 
short-term memory that show that observers are sensi-
tive to relative changes in targets versus distractors 
(Becker, 2010; Becker et  al., 2013; Martin & Becker, 
2021). For example, in change-detection tasks, color 
changes from endpoints to inner values (e.g., changing 
the reddest square) are sometimes more noticeable than 
changes from inner-to-inner positions. Likewise, 
searches for predefined targets that are near the middle 
of the scale appear to proceed from the endpoints 
toward inner values, even when the endpoints are never 
targets themselves (Hamblin-Frohman et al., 2023). We 
propose that the bipartite format explains how features 
are coded before attention operates over them in mem-
ory and visual-search tasks. A change in the endpoint 
requires an update in autoscaling that may be a reliable 
attentional cue that explains change-detection effects. 
And endpoints are easily accessible anchors from which 
features are represented in the bipartite model, such 
that participants might easily define attentional tem-
plates for other targets relative to them, as shown by 
the work of Hamblin-Frohman and colleagues.

As discussed above, a benefit for predefined targets 
that are incidentally also endpoint values has been 
previously demonstrated in the visual-search literature 
(for review, see Wolfe, 2021). The bipartite format pro-
vides a mechanistic explanation for both when we 
should and should not expect visual search to benefit 
from endpoint targets. Because feature endpoints are 
privileged in the bipartite format, any visual-search task 
that uses targets defined on a bipartite dimension 
should produce benefits for the maximal and minimal 
values as targets. But because not all perceptual dimen-
sions are expected to be in the bipartite format (e.g., 
orientation is a circular dimension that does not require 
dealing with infinity), we should not observe endpoint 
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effects in all dimensions. This is consistent with the 
work of Wolfe et al. (1992), who showed that the steep-
est line is not found faster in heterogeneously oriented 
sets. Our results, therefore, intersect with the rich lit-
erature on visual search by providing a plausible format 
for the dimensional-feature scales over which attention 
can be tuned and targets can be selected.

Potential limits on the generalizability of our findings 
include the population sampled (college undergradu-
ates) and that our stimuli were artificial compared with 
real-world magnitude perception and presented in a 
highly controlled environment.
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