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Abstract: The meaning of ‘most’ can be described in many ways. We offer a framework
for distinguishing semantic descriptions, interpreted as psychological hypotheses that go
beyond claims about sentential truth conditions, and an experiment that tells against
an attractive idea: ‘most’ is understood in terms of one-to-one correspondence. Adults
evaluated ‘Most of the dots are yellow’, as true or false, on many trials in which yellow
dots and blue dots were displayed for 200 ms. Displays manipulated the ease of using a
‘one-to-one with remainder’ strategy, and a strategy of using the Approximate Number
System to compare of (approximations of) cardinalities. Interpreting such data requires
care in thinking about how meaning is related to verification. But the results suggest
that ‘most’ is understood in terms of cardinality comparison, even when counting is
impossible.

How is the word ‘most’ related to human capacities for detecting and comparing
numerosities? One might think the answer is obvious, and explicit in standard
semantic theories: ‘most’ is understood in terms of a capacity to compare cardinal
numbers; e.g. ‘Most of the dots are yellow’ means that the number of yellow dots
is greater than the number of nonyellow dots. But there are other possibilities for
how competent speakers understand ‘most’, and we offer experimental evidence
that tells against some initially attractive hypotheses. By discussing one lexical item
in this way, we hope to illustrate how semantics and psychology can and should be
pursued in tandem, especially with regard to the capacities that let humans become
numerate.

Following common practice in semantics, we begin by characterizing the
contribution of ‘most’ to the truth conditions of sentences that have the following
form: Most (of the)�s are �. At this level of analysis, there are many equivalent
characterizations, as discussed below. Our aim is to give some of these formal
distinctions empirical bite, in a way that permits adjudication of distinct hypotheses
about how speakers understand ‘most’ (cf. Hackl, 2009). In short, we want to know
how speakers represent the truth conditions in question.
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In Section 1, we focus on two ways of formally specifying a truth condition for
‘Most of the dots are yellow’: comparing abstract cardinalities (is the number of
yellow dots greater than the number of nonyellow dots); or comparing dots in terms
of one-to-one correspondence (can some but not all of the yellows be paired off
with all the nonyellows). In Section 2, we discuss the relation of such specifications
to understanding, in the context of questions about how meaning is related to
verification. We contend that experimental evidence, of the sort we offer, can tell
for/against certain hypotheses about how ‘most’ is understood. Section 3 extends
this point via the distinction between algorithms and functions computed (Church,
1941; Marr, 1982) in the context of semantics; cf. Peacocke, 1986.

The idea is that ‘most’ is associated with an effective procedure, which yields
answers to yes/no questions of the form ‘Most �s are �?’, given ordered pairs of
subprocedures that determine whether something is a � and whether something is
a �. From this perspective, to understand ‘most’ is to recognize it as an instruction
to generate (a representation of) a certain algorithm whose outputs have a binary
character (yes/no, truth/falsity). A thinker may often be unable to execute their
‘most’-algorithm and use it as a verification strategy; and there may often be better ways
of answering the specific question at hand. But our claim is that in suitably controlled
circumstances, the ‘most’-algorithm will be used as a default verification strategy. In
this sense, we assume the algorithms in question are executable, at least sometimes.

Section 4 reviews independent evidence that humans have the cognitive resources
needed to implement both cardinality-comparison algorithms, via approximate
number representations, and correspondence algorithms for ‘most’. Section 5
summarizes the various possibilities, under discussion, for understanding ‘most’
and verifying sentences of the form ‘Most (of the) �s are �’. In Section 6, we
present an experiment in which displays of dots varied across trials, in ways that
made it easier or harder to employ a correspondence algorithm as a verification
strategy. There was no evidence of subjects using such a strategy. By contrast,
there was clear evidence of subjects of comparing cardinalities, via the Approximate
Number System (ANS). In Section 7, we discuss some potential concerns about
the task. But detailed analysis confirms our conclusion that even when speakers
are forced to estimate the relevant cardinalities, they understand ‘most’ in terms
of whether one number is greater than another. Section 8 offers some concluding
remarks about the utility of pursuing semantic and psychological questions in
tandem, especially in studies of logical vocabulary and how such words interface
with the cognitive systems that allow humans to become numerate.

1. Background Semantics

In the display corresponding to Figure 1, most of the dots are yellow.
(In the grey-scale presentations used here, white corresponds to yellow, and black

to blue. But we will speak of yellow and blue, the colors used in our experiment.)
In the display, it is also true that the number of yellow dots is greater than the
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Figure 1 An array, of yellow (white) and blue (black) dots, in which most of the dots are yellow

number of dots that are not yellow. And however many dots there are, necessarily,
most of the dots are yellow if and only if (iff) the yellow dots outnumber the other
dots. Indeed, this seems obvious. So one might propose that:

(1) Most of the dots are yellow,

means just this: #{x: Dot(x) & Yellow(x)} > #{x: Dot(x) & ¬Yellow(x)}; where
‘#{. . .}’ indicates the cardinality of the set in question. In figure 1, #{x: Dot(x) &
Yellow(x)} = 5, while #{x: Dot(x) & ¬Yellow(x)} = 2. So perhaps a sentence
of the form ‘Most (of the) �s are �’ means that the number of �s that are � is
greater than the number of �s that are not �.1

On this view, the determiner ‘most’ signifies a relation that one set can bear to
another. This allows for a unified semantics of determiners—words like ‘every’
and ‘some’, which can combine with a noun and then a tensed predicate to form a
complete sentence as in (2-4):2

(2) [(Every dot) (is yellow)]
(3) [(Some dot) (is yellow)]
(4) [(Five dots) (are yellow)].

1 Let us flag three potential complications. First, in the absence of salient dots, examples like
‘Most dots are yellow’ are naturally heard as generic—implying, roughly, that dots tend to
be yellow. But when presented with a display like Figure 1, the context of evaluation is
transparent. Second, in ordinary discourse, instances of ‘Most (of the) �s are �’ often suggest
that significantly more than half of the �s are �. But as discussed below, our data provide
independent reason for treating this as a pragmatic effect. Third, we focus on uses of the
determiner ‘most’ with count nouns like ‘dot’, as opposed to mass nouns like ‘water’ and
‘sand’, as in ‘Most of the sand is wet’. Since any adequate theory of the former should be
extendable to the latter, one might think (pace standard proposals) that ‘most’ is understood in
terms of a comparative notion (perhaps ‘more’), whose meaning is not specified in terms of
cardinalities. We return to this last point in our final section and other work.

2 The noun ‘dots’ is the determiner’s internal argument, while ‘are yellow’ is the external
argument—on the model of [Fido [chased Garfield]], in which ‘Garfield’ and ‘Fido’ are the
internal and external argument of the verb.
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One can say that ‘every’ signifies the subset relation, and hence that (2) is true iff
{x: Dot(x)} ⊆ {x: Yellow(x)}. Likewise, one can say that ‘some’ signifies nonempty
intersection, and hence that (3) is true iff {x: Dot(x)} ∩ {x: Yellow(x)} �= ∅. But
one can also describe the semantic contributions of ‘every’ and ‘some’ in terms of
cardinalities: every � is � iff #{x : �(x) & ¬�(x)} = 0; some � is � iff #{x: �(x) &
�(x)} > 0. From this perspective, ‘five’ is a special case of ‘some’, since (exactly)
five �s are � iff #{x: �(x) & �(x)} = 5. This invites the characterization of ‘most’
noted above: most �s are � iff #{x: �(x) & �(x)} > #{x: �(x) & ¬�(x)}. But
while these biconditionals may correctly and usefully describe the contributions
of determiners to sentential truth conditions, psychological questions remain. In
particular, what representations do competent speakers generate in understanding
determiners?

Prima facie, a speaker can understand ‘every’ and ‘some’ without having a
concept of zero, or any capacity to determine the cardinality of a set. It seems like
overintellectualization to say that sentence (2) means that zero is the number of dots
that are not yellow, or that (3) means that the set of yellow dots has a cardinality
greater than zero. Indeed, one might describe the semantic roles of ‘every’ and
‘some’ in first-order terms, without reference to sets: every � is � iff ∀x:�x(�x),
some � is � iff ∃x:�x(�x). We will not pursue this particular issue here. But
analogous issues arise with regard to ‘most’.

Theorists can capture the truth-conditional contribution of ‘most’ without
reference to numbers, by appealing instead to one-to-one correspondence. For the
notions of cardinality and one-to-one correspondence are intimately related. The
yellow dots and the blue dots have the same cardinality, as in each of the scenes
depicted in Figure 2, iff the yellow dots correspond one-to-one with the blue
dots.

More generally, the yellow dots and the blue dots have the same cardinality iff
there is a function F such that: for each yellow dot x, there is a blue dot y, such
that F(x) = y & F(y) = x. And this truism has a consequence worth noting.

(a) (b) (c)

Figure 2 Three arrays in which the yellow dots and the blue dots are equinumerous: (a) column pairs
sorted, (b) column pairs mixed, with obvious correspondence, and (c) column pairs mixed, with less
obvious correspondence
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(a) (b)

Figure 3 Two arrays in which the yellow dots clearly outnumber the blue dots: (a) column pairs sorted,
display, and (b) column pairs mixed

A thinker might be able to determine that some things correspond one-to-one
with some other things, and hence that the former are equinumerous with the
latter, even if the thinker is unable to determine the shared cardinality in question.
Consider, for example, Figure 2b. One need not know that there are four yellow
dots, and four blue dots, in order to know that there are (exactly) as many yellow
dots as blue dots. We return to the relevant generalization, often called ‘Hume’s
Principle’, which captures an important truth about numbers.

(HP)#{x: �(x)} = #{x: �(x)} iff OneToOne[{x: �(x)}, {x: �(x)}]
Tacit knowledge of this generalization, ranging over predicates � and �, may play
an important role in mature numerical competence.3 But for now, we just want
to note that recognizing equinumerosity does not require a capacity to recognize,
compare, and identify cardinalities.

Correlatively, a thinker might be able to recognize nonequinumerosity—and
determine which of two collections has the greater cardinality—without being able
to recognize, compare, and distinguish cardinalities. Counting is not required to
determine if some things outnumber some other things. In each scene in Figure 3,
there are more yellow dots than blue dots.

One can see that this is so, and hence that most of the dots are yellow, without
counting or otherwise figuring out the number of yellow dots. It suffices to note
that some but not all of the yellow dots can be put in one-to-one correspondence
with all of the blue dots.

Put another way, the yellow dots outnumber the blue dots—the set of yellows
has a greater cardinality than the set of blues—iff a proper subset of the yellow

3 For discussion, see Wright, 1983; Boolos, 1998; and the essays in Demopolous, 1994. At least
prima facie, the left side of (HP) is an identity claim that logically implies the existence of
at least one cardinal number, while the right side is a correspondence claim (concerning the
elements of the sets in question) that does not logically imply the existence of any number. So
while (HP) is in some sense obvious, it seems not to be a truth of logic; see also note 8 below.
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dots has elements that correspond one-to-one with the (elements of the set of) blue
dots. And theorists can define a second correspondence relation, OneToOnePlus∗,
as shown below:

OneToOnePlus∗[{x : �(x)}, {x : �(x)}] iff for some set s,

s ⊂ {x : �(x)} & OneToOne[s, {x : �(x)}].

Then for cases involving finitely many things, the following generalization is
correct:

GreaterThan[#{x: �(x)}, #{x: �(x)}] iff OneToOnePlus∗[{x : �(x)}, {x : �(x)}].

If we allow for infinite subsets in the definition of ‘OneToOnePlus∗’, this
generalization wrongly implies that the set of natural numbers has a greater
cardinality than the set of even natural numbers. (There is a proper subset of
the naturals—e.g. the evens—that corresponds one-to-one with the evens.) But
this supports the point that counting is not required to determine if some things
outnumber some other things. Moreover, a ‘OneToOnePlus’ relation can be
defined more cautiously, with a second clause that is otiose for finite domains:

OneToOnePlus[{x: �(x)}, {x: �(x)}] iff
(i) for some set s, s ⊂ {x: �(x)}& OneToOne[s, {x: �(x)}], and
(ii) ¬OneToOne[{x: �(x)}, {x: �(x)}].

Then the following generalization is correct:

GreaterThan[#{x : �(x)}, #{x : �(x)}] iff OneToOnePlus[{x: �(x)}, {x: �(x)}].

So (5) is true iff OneToOnePlus[{x: Dot(x) & Yellow(x)}, {x: Dot(x) &
¬Yellow(x)}].

(5) Most dots are yellow.

And to repeat, given finitely many dots, this condition is met iff for some proper
subset s of the yellow dots, OneToOne[s, {x: Dot(x) & ¬Yellow(x)}]

Perhaps, then, (5) is not understood as a numeristic claim according to which
one cardinality exceeds another. Though likewise, (5) may not be understood as a
correspondence claim. Given formally distinct but truth-conditionally equivalent
ways of describing the semantic contribution of ‘most’, one wants to know if there
is a corresponding psychological distinction—and if so, how to characterize it in a
theoretically useful way.

One possibility is that there is no fact of the matter to discern, much as there is
no fact of the matter about whether temperatures should be measured in Fahrenheit
or Centigrade; cf. Quine, 1960; Davidson, 1974. Perhaps describing the meaning
of (5) in terms of cardinalities is just as good, and just as bad, as describing that
meaning in terms of one-to-one correspondence. Some distinctions are merely
notational, or at least not psychologically significant. But another possibility is that
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the contrasting formal descriptions invite, in some way that needs to be made more
explicit, psychological hypotheses that differ in plausibility.

In particular, one might think it is less plausible that (5) is understood in terms
of cardinalities. Competent speakers can reliably answer questions involving ‘most’
in situations that preclude counting. Moreover, in other work, we have found that
some children who seem to lack exact cardinality concepts still seem to understand
‘most’ appropriately (Halberda, Taing and Lidz, 2008). Such facts are not decisive.
Adults may have various methods for verifying cardinality claims, when counting
is impossible or not worth the bother; and children may lack full competence. But
distinctions among truth-conditionally equivalent specifications can at least suggest
different algorithms for determining the truth/falsity of (5). And one can hypothesize
that competent speakers associate sentences like (5) with algorithms of a certain sort.

2. Meaning and Verification

For these purposes, let’s assume that understanding sentences of the form ‘Most �s
are �’ requires (exercise of) a general capacity to represent the truth conditions
of such sentences accurately and compositionally. The question here is whether
such understanding requires something more, like a capacity to generate canonical
specifications of the relevant truth conditions; where for any such sentence, a canonical
specification corresponds to a certain effective procedure that yields conditional
specifications of truth values, given decisions about how to classify things as
�s/not-�s and �s/not-�s.

One could certainly invent a communication system in which the sound of (5),

(5) Most dots are yellow,

indicates the truth condition that is indicated equally well by (5a) and (5b):

(5a) GreaterThan[#{x: Dot(x) & Yellow(x)}, #{x: Dot(x) & ¬Yellow(x)}]
(5b) OneToOnePlus[{x: Dot(x) & Yellow(x)}, {x: Dot(x) & ¬Yellow(x)}].

A competent user of the system might be free to represent this truth condition in any
workable way, and express any such representation—regardless of format—with
the sound of (5). But one could also invent a language in which this sound
is, by stipulation, an instruction to generate a representation of the form shown
in (5a). We think the natural phenomenon of understanding is psychologically
demanding in this sense. But a canonical specification/procedure need not be used
as a verification strategy (cf. Dummett, 1973; see Horty, 2007 for discussion).

A canonical specification/procedure is a way of computing a truth condition.
And one can make a yes/no judgment concerning the truth condition computed—in
Fregean mode, one can make a judgment about which truth value is the one
conditionally specified—without executing the mode of composition in question.
Given (5a) as a way of computing the truth condition of (5), one can employ many
‘methods’ (or verification strategies) to make the corresponding yes/no judgment.
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Depending on one’s capacities and background beliefs/desires, one might: count
and compare cardinalities; pair off dots and check for remainders; ask a friend; roll
some dice; use one of these methods for a small sample of dots and extrapolate; or
whatever.

Put another way, understanding (5) may be a matter of perceiving this sentence
as one whose truth or falsity is specified in a certain way. But this is compatible
with endlessly many strategies for judging whether the sentence is true. For even if
one perceives (5) as posing the question indicated in (5a), as opposed to (5b), one
might seek an answer in many ways.

The two procedures we focus on, cardinality-comparison and OneToOnePlus-
assessment, can never disagree: there is no conceivable scenario in which these
algorithms yield different results. Of course, actual attempts to execute the algorithms
may fail in different ways in different circumstances. But taking the outputs to be
conditional specifications of truth values, for any instance of ‘Most �s are �’,
the two procedures cannot ever yield specifications that specify different truth
values. Nonetheless, the ‘truth-procedures’ differ. One can imagine creatures who
cannot represent cardinalities, and so cannot associate (5) with the first procedure.
Likewise, one can imagine creatures who lack the representational resources to
associate (5) with the second procedure. One can also imagine creatures who have
the cognitive resources required to associate (5) with either procedure, but in fact
understand (5) in exactly one way, sometimes using the other procedure as a
verification strategy.

Let us stress: our view is not that meaning is verification, or that studying
verification strategies is a generally useful way to study meanings. We take it as
given that whatever a declarative sentence means, there will be endlessly many
ways of judging (in a given setting) whether or not the sentence is true. But we
do find it plausible that at least with regard to ‘logical’ vocabulary, meanings are
individuated at least as finely as truth-procedures; see Church (1941) on sentential
‘functions-in-intension,’ which can but need not be used as verification strategies.4

One way of vindicating this old idea is to independently describe situations that
lead competent speakers to use meaning-specifying effective procedures as default
verification strategies. If such situations can be empirically identified, this could also
support (nondemonstrative but confirmable) inferences about meaning from facts
about verification in these special situations.

Of course, there can be no guarantee that different speakers associate ‘most’ with
the same canonical specification/procedure, or even that any one speaker does so
across contexts. But hypothesizing variation is not costless. And in any case, one can
try to argue empirically that certain algorithms, including some that initially seem

4 Horty (2007) drawing on Dummett, 1973, discusses the relation of algorithms/procedures to
Frege’s notion of definition. See also Chomsky’s (1986) discussion of I-languages, with ‘I’
connoting intensional/procedural characterizations of functions. But in this context, intensions
should not be identified with sets of possible worlds, as Church’s own (algorithm-focused)
discussion makes clear.

© 2009 The Authors
Journal compilation © 2009 Blackwell Publishing Ltd



562 P. Pietroski, J. Lidz, T. Hunter and J. Halberda

like plausible candidates, are not used in situations that positively invite their use.
In these cases, if such there be, data concerning verification would be informative.

More importantly, experimental evidence may reveal the use of verification
strategies that are at odds with certain hypotheses about canonical specifica-
tions/procedures, given independently confirmed models of the cognitive systems
that support the strategies.

To foreshadow, imagine discovering that adults often rely on the Approximate
Number System (ANS) in judging whether or not most of the dots are yellow.
Independently attractive models of this system suggest that it has no representations
for single individuals; rather, the ANS generates estimates of the cardinalities
exhibited by one-or-more things. In which case, the meaning of ‘most’ must
permit verification via a cardinality-estimating system that does not represent single
individuals. This turns out to be a substantive constraint, as we’ll argue in Section 5,
since understanding ‘most’ in terms of correspondence would require a mechanism
for converting representations like (5b) into representations like (5a):

(5a) GreaterThan[#{x: Dot(x) & Yellow(x)}, #{x: Dot(x) & ¬Yellow(x)}]
(5b) OneToOnePlus[{x: Dot(x) & Yellow(x)}, {x: Dot(x) & ¬Yellow(x)}].

3. Analogy to Marr

The analogy to Marr’s (1982) contrast, between Level One (computational) and
Level Two (algorithmic) questions, is intended. Given a system that seems to
be performing computations of some kind, theorists can distinguish Level One
questions about what the system is computing from Level Two questions about how
the system is computing it. With regard to understanding sentences, this distinction
has a familiar application that can be extended to understanding words.

Imagine three people, each with their own definition of ‘most’. Alex learned
‘most’ explicitly in terms of cardinalities and the arithmetic relation greater-than,
while Bob (who cannot count) has always defined ‘most’ in terms of one-to-one
correspondence. By contrast, Chris has an ANS that interacts with other cognitive
mechanisms to generate ‘most’-judgments as follows: in cases that are not close calls,
say 9 yellow dots versus 4 blue dots, Chris shares the judgments of Alex and Bob;
but in close cases, say 8 versus 7, Chris cannot tell the difference and so defers
to others. Alex, Bob, and Chris can communicate. Indeed, they never disagree
about whether sentences of the form ‘Most �s are �’ are true. In this sense, they
understand each other, at least in a Level One way. But their psychologies differ in
important respects.

Given some assumptions about the kinds of sentential properties that competent
speakers can recognize—say, the truth conditions of declarative sentences—one
can ask how speakers recognize these properties. In practice, semanticists usually
stop short of offering answers, even when they specify algorithms that determine
truth conditions on the basis of hypothesized properties of words and modes of
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grammatical combination. Such algorithms are rarely put forward as explicit Level
Two hypotheses.5 For often, it is hard enough to find one good way of charac-
terizing a ‘composition function’ that speakers somehow compute. But it is widely
agreed that complex expressions are understood, one way or another, by employing
algorithms that are compatible with constraints imposed by natural language syntax.

Similarly, one can and should distinguish the truth conditional contribution of a
word like ‘most’ from how that contribution is represented by competent speakers. It
is often useful to begin with a proposal about what the truth conditional contribution
is; and for these initial purposes, truth conditionally equivalent representations are
equivalent. The corresponding Level One task—of describing the contributions
of determiners like ‘every’ and ‘most’ in a way that permits formulation of some
algorithm that determines the truth conditions of relevant sentences, given relevant
syntactic constraints—is far from trivial. But depending on the theorist’s choice of
formal notation, it might be enough to say that each determiner indicates a certain
function from pairs of predicates to truth conditions. In which case, endlessly many
formally distinct lexical specifications will be acceptable. But if the task is to say how
speakers understand words, with the aim of saying how linguistic comprehension
frames the task of evaluating sentences, theorists must get beyond Level One
questions about which function a given word indicates.

It may not be possible, at this early stage of inquiry, to formulate defensible Level
Two hypotheses about exactly how speakers represent and compute any particular
function. Still, one can try to formulate and defend ‘Level 1.5’ hypotheses about
the kinds of representations that children and adults employ in understanding the
word ‘most’.6 Do they represent cardinalities, and a relation between them, or not?
Of course, there is more than one cardinality-comparison algorithm; and there can
be no guarantee that all speakers specify the meaning of ‘most’ in terms of the
same one.7 But theorists can distinguish two classes of algorithms for determining
whether or not most dots are yellow: algorithms which require representations of
two cardinalities and a subprocedure for determining whether the first is greater
than the second; and algorithms which require dot-representations that support a

5 For an exception, see Larson and Segal, 1995. Though of course, many would agree that
semantics should be viewed as a branch of human psychology; see, e.g. Higginbotham, 1985;
Chierchia and McConell-Ginet, 2000.

6 Peacocke (1986) introduces the ‘Level 1.5’ terminology to talk about algorithms that correspond
to a certain kind of ‘information flow;’ see also Davies (1987) on the ‘mirror constraint’
following Evans, 1981. But for our purposes, it is enough to contrast algorithms that require
(representation and) comparison of cardinalities with algorithms that do not.

7 The number of yellow dots might be determined by counting, or by recognizing a pattern
already associated with a number. (One might come to associate a general spatial arrangement
with a limited range of cardinalities—e.g. three items typically form some kind of triangle,
two items a line—and thereby avoid counting as a method for assessing cardinalities; see
Mandler and Shebo, 1982; LeCorre and Carey, 2007.) Counting might start with zero or one.
A mechanism might determine whether one number is bigger than another by consulting
memory, or by subtracting and checking for a (positive) remainder. And so on.
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procedure for determining suitable correspondences (without needing to represent
cardinalities).

Given this distinction, one can ask for each class of algorithms—i.e. for each
abstract ‘way’ of computing the relevant function—if there is some psychologically
plausible way of computing the function in that (abstract) way. In this context,
let us return to an earlier point. One might think that cardinality-comparison
specifications/procedures are psychologically implausible. Independent evidence
suggests that counting is often slower and more laborious than evaluating sentences
with ‘most’. And in situations where items are presented too briefly to count,
the subject can still determine whether or not most �s are �s, appealing to a
OneToOnePlus algorithm might seem especially attractive.

More generally, one might think that humans who cannot count understand
‘most’ in terms of correspondence as opposed to cardinalities. If this is correct,
parsimony would suggest that adults who can count still understand ‘most’ in
the same way. Perhaps counting provides a new way of determining whether
some things (the �s) bear the OneToOnePlus relation to some things (the �s).
This suggestion coheres with certain foundational considerations that may well be
germane to semantics and logic. Recall the generalization (HP),

(HP) #{x: �(x)} = #{x: �(x)} iff OneToOne[{x : �(x)}, {x : �(x)}],
which reflects the deep relation between counting and one-to-one correspondence.

It turns out that all of arithmetic follows from (HP), given a consistent logic that
is presupposed by any plausible semantics for natural language. This remarkable
fact, essentially proved by Frege (1884, 1893, 1903), illustrates the power of the
modern logic that Frege (1879) invented and contemporary semanticists regularly
employ.8 Given this logic, (HP) encapsulates arithmetic. The intuitive simplicity of
one-to-one correspondence, and its relation to the foundations of arithmetic, thus
adds to the attractions of saying that ‘most’ (along with other counting/cardinality
expressions) is understood in terms of one-to-one correspondence.

Given these considerations, one might expect speakers to jump at the chance
of evaluating ‘Most dots are yellow’ without having to determine the number
of yellow dots (and nonyellow dots). Anecdotally, this was the expectation of
most semanticists and logicians we queried, including one or more authors of this
paper. At a minimum, a OneToOnePlus strategy would seem to be a plausible
candidate for speakers who (for whatever reason) cannot count the relevant dots.
Our experiment, described in Section 6, suggests that this strategy is not available

8 The logic is second-order, permitting quantification into positions occupiable by predicates.
But this cannot be foreign to speakers who understand ‘most’; see note 2. Of course, deriving
the (Dedekind-Peano) axioms of arithmetic from (HP) requires definitions for arithmetic
terms, along with appeal to a first number; and see note 3. But Frege defined zero as the
number of things satisfying a logically contradictory property, and then given (HP), was able
to prove the following: zero has a unique successor, which has a unique successor, and so
on; and these ‘descendants’ of zero support proofs by (mathematical) induction. See Pietroski,
2006 for the potentially broader relevance to linguistics.
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to participants. But before turning to the details, we need to review some relevant
literature concerning the psychology of number.

4. Background Psychology, Including The ANS

The two classes of algorithms we have been discussing, corresponding to (5a)
and (5b),

(5a) GreaterThan[#{x: Dot(x) & Yellow(x)}, #{x: Dot(x) & ¬Yellow(x)}]
(5b) OneToOnePlus[{x: Dot(x) & Yellow(x)}, {x: Dot(x) & ¬Yellow(x)}],

involve two kinds of representational resources for which there is evidence in
the psychological literature. In this sense, neither class of algorithms requires
novel cognition. First, there are representations of exact cardinal values—available
at least to adults who know the meanings of words like ‘seven’, ‘nine’
and ‘sixty’—that might support a cardinality specification/procedure for ‘most’
(Dehaene, 1997). Second, demonstrations of object-tracking in infants (Wynn,
1992; Feigenson, 2005) have revealed a system that can detect one-to-one
correspondences, at least in certain situations. We must also consider a third
cognitive resource, the Approximate Number System, which can provide numerical
content for certain representations. But we wanted to discuss this system separately,
with the distinction between (5a) and (5b) in place, without prejudging questions
about whether and how speakers can use the ANS to verify ‘most’-claims.

Before learning how to count, children have an approximate sense of the number
of items in an array. Like many nonverbal animals, including rats and pigeons, human
infants have an Approximate Number System (ANS): an evolutionarily ancient
cognitive resource that generates representations of numerosity across multiple
modalities (e.g. for sets of visual objects, auditory beeps, and events such as jumps,
presented either serially or in parallel). The ANS does not require explicit training
with numerosity in order to develop, and the brain areas that support this system
in humans and in other primates have been identified (for review see Feigenson,
Dehaene and Spelke, 2004). The ANS generates representations of pluralities
in ways that effectively order those pluralities according to cardinality—albeit
stochastically, and within certain limits described by Weber’s Law (for review see
Dehaene, 1997).

Weber’s Law, which applies to many kinds of representation (e.g. loudness,
weight, brightness), states that discriminability depends on the ratio of relevant
representational values. With respect to the ANS, 6 things are detectably different
from 12 to the same extent that 60 things are detectably different from 120.
In each case, the Weber Ratio is 2 (WR = larger set #/ smaller set #). If the
absolute numeric difference between the comparison groups is maintained, but the
numerosities are increased (e.g. from 6 vs 12 to 12 vs 18, with a constant differ-
ence of 6), discriminability will become poorer. This is the so-called size effect.
There is also a distance effect. If the cardinality of one group is held constant while
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Figure 4 Gaussians that indicate several Approximate Number System representations. Standard
deviations (indicating noise) increase linearly with the number of things represented (e.g. 8 is represented
with less certainty than 4), reflecting ratio-dependent performance

the other changes (e.g. from 6 vs 12 to 6 vs 18), discriminability increases with
greater numeric distance between the cardinalities. Representations of the ANS also
seem to be integrated with adult understanding of exact cardinalities, since reactions
to questions that seem to be about cardinalities or numerals—e.g. ‘Is 67 bigger than
59’—also exhibit size and distance effects (for review see Dehaene, 1997).

It will be useful to consider a widely endorsed model of the representations
generated by the ANS: each numerosity is mentally represented by a distribution
of activation on an internal ‘number line’ constituted by a range of possible ANS-
representations that exhibit certain global properties. The distributions in question
are inherently noisy, and they do not represent number exactly or discretely
(see e.g. Dehaene, 1997; Gallistel and Gelman, 2000). The mental number line
is often characterized as having linearly increasing means and linearly increasing
standard deviations (Gallistel and Gelman, 2000), as in Figure 4. In this figure,
numerosities are represented with Gaussian curves, with the discriminability of
any two numerosities being a function of the overlap of the corresponding
Gaussians: the more overlap, the poorer the discriminability. For example, the
curves corresponding to 8 and 10 overlap more than the curves corresponding to
2 and 4. And notice that all the representations, even the first one, are Gaussian
curves. In this model, the ANS has no discrete representation of unity; no curve
represents one (or more) things as having a cardinality of exactly one.9 We return
to this point.

9 Even the initial representations/curves of the ANS—those with the smallest standard deviations,
indicated towards the left in figure 4—are not representations of precise cardinalities; although
only rarely will the ANS fail to distinguish a scene with (exactly) two perceptible items from
an otherwise similar scene with (exactly) one perceptible item. The mental number line might
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The acuity of the ANS improves during childhood. In terms of the model, the
spread of Gaussian curves decreases with age. Adults can discriminate numerosities
that differ by at least a 7:8 ratio (Halberda and Feigenson, 2008; Barth et al., 2003;
van Oeffelen and Vos, 1982). But for 6-month-old infants, numerosities must differ
by at least a 1:2 ratio in order for discrimination to be accurate (Xu and Spelke,
2000). In both human adults (Halberda, Sires and Feigenson, 2006) and infants
(Zosh, Halberda and Feigenson, 2008), the ANS is capable of generating numerosity
estimates for up to three sets in parallel—enough for the apparent numerical content
of a determiner like ‘most’, which might compare two cardinalities.10 The capacity
for building multi-set representations in infants suggests the potential relevance of the
ANS for supporting comparative determiners at the earliest ages of language learning.

By 5 years of age, in numerate cultures, representations of the ANS have been
mapped onto the discrete number words (LeCorre and Carey, 2007). The ANS is
activated anytime a numerate adult sees an Arabic numeral, hears or reads a number
word or performs a mental operation on numbers such as subtraction (for review
see Dehaene, 1997). The ANS generates representations of numerosity very rapidly.
Imagine flashing an array of items (e.g. 25 yellow dots) for only 250 ms, too fast for
explicit counting. The recording of single neurons—in the physiological analog of
the ANS, in awake behaving monkeys who are shown such arrays—suggests that
the ANS can generate a representation of the approximate number of items present
within 150 ms of stimulus onset. That is, a representation/Gaussian of approximately
25 can be generated very quickly (Nieder and Miller, 2004). When shown such
arrays, adults and children over 5 can produce a discrete numerical estimate (e.g.
‘about 20 yellow dots’). Over many trials, the pattern of the numerical estimates
given by adults and children will follow the same shape as the Gaussian curves in
Figure 4. For example, when shown many instances of 25 dots, ‘twenty-five’ will
be the most common answer; though participants will also sometimes say ‘twenty-
four’ or ‘twenty-six’, ‘twenty’ or ‘thirty’ (etc.), with the probability of saying a
given number word forming a smooth Gaussian curve centered on ‘twenty-five’.
(Halberda, Sires and Feigenson, 2006; Le Corre and Carey, 2007; Whalen, Gallistel
and Gelman, 1999). This demonstrates that the representations of the ANS can be
mapped to discrete number words, and thereby discrete cardinal values, albeit in a
noisy and approximate way.

Let us return, now, to the meaning of ‘most’. As noted above, the ANS will not
deliver a representation of something as exactly one. This system does not generate

also be modelled as logarithmically organized with constant standard deviation. While this
would change the look of the curves in Figure 4, they would remain Gaussian. Either format
reflects the hallmark property of the ANS: discrimination of two quantities is a function of
their ratio (Weber’s Law). Here we will assume the linear format, as it has traditionally been
the more dominant model. But either model would be applicable to the simple discrimination
task we rely on (e.g. Cordes et al., 2001; Gallistel and Gelman, 2000; Meck and Church, 1983,
Whalen et al., 1999).

10 Recall that ‘most’ is essentially comparative—most �s are � iff #{x: �(x) & �(x)} > #{x:
�(x) & ¬�(x)}—in contrast with (firstorderizable) determiners like ‘every’.
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a representation of unity or any representation of a ‘minimal’ difference between
distinct cardinalities; cf. Leslie, Gallistel, and Gelman, 2008. If only for this reason,
speakers cannot rely on the representations of the ANS to implement a OneToOne-
Plus algorithm, for understanding or evaluation. While these representations can be
(and are) linked to cardinal number words, they do not provide the notion of a unit
that distinguishes one cardinality from the next. Given one-or-more yellow dots,
the ANS can represent ‘it-or-them’ as oneish; and in principle, the yellow dot(s) so-
represented might be paired with some similarly represented blue dot(s), until only
unrepresented yellows or blues remain. Thus, one can imagine a ‘OneishToOneish-
Plus’ algorithm. But as we’ll see, the data suggest a very different use of the ANS.

Nonetheless, representations of the ANS do represent things, stochastically, as
ordered in a certain way that seems numerical. And these representations can be
mapped onto discrete number words. This suggests two possible ways of using ANS-
representations: first, in a canonical specification/procedure of the truth conditions
for ‘most’-sentences, without any independent appeal to (concepts of) cardinal num-
bers; or second, in a frequently used verification strategy that naturally interfaces
with a meaning canonically specified in terms of cardinality comparison. The first
possibility deserves extended discussion. But it also raises technical difficulties that go
well beyond the scope of this paper.11 So here, we focus on the second option. Cor-
respondingly, our subjects are adult speakers of English who have presumably linked
the Gaussian approximate number representations to the discrete number words.

As a way of fleshing out this second possibility, of speakers using their ANS in
verification, one might imagine a ‘numeralizing waystation’—perhaps restricted to
speakers like our subjects—that associates ANS-representations with independent

11 We would quickly be led into discussions of partial functions, vagueness, techniques of
supervaluation, secondary qualities, uncertainties (of subjects and theorists) and the attending
puzzles. One tempting idea is to introduce a metalanguage notion ‘Exceeds(x, y)’, where the
variables range over cardinal numbers—whatever they are, perhaps certain sets that exhibit
the right structural relations—and ANS representation types, with the following consequence:
unlike any pair of distinct numbers, a pair of ANS representations that lie within some
specified range of ‘unreliable discriminability’ can be such that neither Exceeds the other,
even if there is a sense in which the representations are stochastically ordered. At least in ideal
conditions, each ANS representation will have a Mode(/Mean/Median)-number: the likeliest
(/average/middle) number of things to trigger the representation. But one can define notions
of indifference such that ANS-representations with different M-numbers are indifferent with
regard to ‘Exceeds(x, y)’. With enough technology, theorists might be able to represent
the meaning of the word used by numerate adults (‘Mostnumerate’) as a precisification of the
meaning of an earlier word, ‘Mostinnumerate’ that has the following characteristic: when most of
the dots are yellow, and it is not a close call, ‘Mostinnumerate of the dots are yellow’ is true; when
it is false that most of the dots are yellow, and it is not a close call, ‘Mostinnumerate of the dots
are yellow’ is false; but sometimes, as when 51% or 49% of the dots are yellow, ‘mostinnumerate
of the dots are yellow’ is neither true nor false. But however one spells out the details, two
basic questions will remain: does the metalanguage expression ‘Exceeds(x, y)’ indicate a total
function from pairs number-like entities to truth values, so that the result is false when the
values of ‘x’ and ‘y’ are indifferent ANS-representations; and how should theorists think about
the relation of their invented metalanguage to the concepts of speakers? We cannot discuss
such questions here, important though they are.
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representations of exact cardinal values. For example, an ANS-representation that
is usually triggered by pluralities of six (though sometimes five or seven) might be
associated with a mental analog of ‘6’, while an ANS-representation usually triggered
by pluralities of nine (though sometimes eight or ten, and occasionally seven or
eleven) might be associated with a mental analog of ‘9’. Given some such waystation
that interfaces between the ANS and other cognitive systems, ‘most’-sentences could
be understood as in (5a) yet often verified (imperfectly) via the ANS.

5. Putting the Pieces Together

By way of summarizing to this point, let’s stipulate that the ‘most’-function (which
may be applicable only to the count-noun cases we are considering), is a total
function that can be characterized in many ways: GreaterThan[#{x: �(x) & �(x)},
#{x: �(x) & ¬�(x)}]; OneToOnePlus[{x: �(x) & �(x)}, {x: �(x) & ¬�(x)}];
etc. From an extensional (E-language) standpoint, these different ways of notating
the ‘most’-function are just that: notational variants. But from an intensional (I-
language) perspective, the different notational choices suggest various possibilities
for canonical specifications/procedures in terms of which speakers understand
‘most’. Some of these possibilities are depicted in Figure 5.

Speakers who associate (the sound of) ‘most’ with the ‘most’-function might
understand ‘Most of the dots are yellow’ as a claim that logically implies
cardinalities, or as a less numerically loaded correspondence claim. Cardinalities can
be determined by counting. But another strategy is to generate ANS-representations
that can be sent to a numeralizing waystation that associates such representations
with mental analogs of written numerals. Positing such a waystation is indicated, in
figure 5, with the box containing ‘#’.

We also note, for completeness, two possibilities that seem especially unlikely:
given a psychologically realized version of Hume’s Principle, indicated with ‘�HP’,

Figure 5 A diagram of hypotheses about ‘most’
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a thinker might understand ‘most’ in terms of cardinality but (whenever possible)
verify by checking for OneToOnePlus correspondence—or conversely, understand
‘most’ in terms of OneToOnePlus but default to verifying by counting.12

This map of options invites the question of which, if any, can be discredited
by experimental methods? We focused on the initially tempting hypothesis that
‘most’ is understood in terms of correspondence, in part because ruling out this
class of possibilities would be a substantive kind of progress that is achievable with
current methods. The basic idea is simple: Step 1, present participants (at time
scales that make counting impossible) with scenes in which it is easy to employ
a OneToOnePlus strategy, and scenes in which it is hard to employ this strategy.
If this variation does not affect participants’ accuracy in evaluating the sentence
‘Most of the dots are yellow’, that tells against the initially tempting hypothesis.
Step 2, determine whether participants rely on the ANS to evaluate ‘most’ and if
yes, consider the possible mappings from meanings to this system.

In our experiment, we presented competent adult English speakers with various
arrays of yellow and blue dots. On each trial, the subject was required to say
whether or not most of the dots were yellow. Arrays were flashed too quickly for
exact counting to be possible (i.e. 200 ms), thus precluding any branch in Figure 5
with ‘count’ as the method of evaluation. Across trials, arrays varied how easy or
hard it was to apply a OneToOnePlus strategy. A null result of this manipulation
argues against a OneToOnePlus specification of what ‘most’ means. More strongly,
we looked for positive evidence of participants relying on representations of the
ANS. For as noted above, if such representations are invoked to answer a ‘most’-
query, this suggests that the query was not understood as one whose answer is the
answer determined by a OneToOnePlus algorithm. Participants were presented
with varying ratios of yellow to blue dots. And so the hypothesis that ANS
representations were used, in evaluating ‘most’-sentences, leads to a very specific set
of predictions (garnered from the literature on the ANS and classic psychophysics)
concerning how performance should vary as a function of ratio.

6. Experiment

We used a common visual identification paradigm to test how speakers understand
‘most’.

7. Method

7.1 Participants
Twelve naive adults with normal vision each received $5 for participation.

12 The latter seems especially implausible, and our experiment tells against the former. But this is
not to say that such procedures are impossible for competent speakers.
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7.2 Materials and Apparatus
Each participant viewed 360 trials on an LCD screen (27.3 × 33.7 cm). Viewing
distance was unconstrained, but averaged approximately 50 cm. The diameter of
a typical dot subtended approximately 1 degree of visual angle from a viewing
distance of 50 cm.

7.3 Design and Procedure
On each trial, participants saw a 200 ms display containing dots of two colors
(yellow and blue). Participants were asked to answer the question ‘Are most of
the dots yellow?’ for each trial. The number of dots of each color varied between
five and seventeen. Whether the yellow set or the blue set was larger (and hence,
whether the correct answer was ‘yes’ or ‘no’) was randomized. Participants answered
‘yes’ or ‘no’ by pressing buttons on a keyboard.

Each trial came from one of nine ‘bins’, each characterized by a ratio. The first
bin contained trials where the ratio of the smaller set to the larger set was close
to 1:2; the second bin contained trials where the ratio was close to 2:3; and the
remaining bins contained trials close to 3:4, 4:5, . . . , 9:10. Each participant received
ten trials in each bin for each of four conditions: Scattered Random, Scattered
Pairs, Column Pairs Mixed and Column Pairs Sorted. The total number of trials
for each participant was therefore 9 ratios × 4 conditions × 10 trials = 360. These
were presented in randomized order.

On Scattered Random trials, all the dots (blue and yellow) were scattered
randomly throughout the display. See Figure 6a. In each of the other three
conditions, dots were displayed in some way intuitively amenable to a ‘one-to-one
pair off’ algorithm, with yellow dots and blue dots occurring in pairs. On Scattered
Pairs trials, every dot from the smaller set was displayed paired with (approximately
four pixels away from) a dot from the larger set; the remaining dots from the larger
set were scattered randomly. See Figure 6b. On Column Pairs Mixed trials, dots
were arranged in a grid with two columns and n rows, where n is the size of the
larger set. Each row had either one dot from each set, or a single dot from the larger
set with the position (left column or right column) for each item being determined
randomly for each row. See Figure 6c. On Column Pairs Sorted trials, dots were
likewise arranged in two columns and n rows, but with all the yellow dots in one
column and all the blue dots in the other. The smaller set of dots was grouped
together from the top of its column, with no empty rows between dots, so that the
display consisted essentially of two parallel lines of dots with side (yellow on left
column or right column) determined randomly. See Figure 6d.

Half of the trials for each trial type for each ratio were ‘size-controlled:’ while
individual dot sizes varied, the size of the average blue dot was equal to the size of
the average yellow dot, so the set with more dots would also have a larger total area
on the screen (i.e. more blue pixels when more dots were blue). The other half of
the trials were ‘area-controlled:’ individual dot sizes varied, but the number of blue
pixels was also the number of yellow pixels (i.e. smaller blue dots on average when
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(a) (b)

(c) (d)

Figure 6 Four sample trial images, from Experiment 1, in which most of the dots are yellow:
(a) Scattered Random, (b) Scattered Pairs, (c) Column Pairs Mixed, (d) Column Pairs Sorted

more dots were blue). On both size-controlled and area-controlled trials, individual
dot sizes were randomly varied by up to 35% of the set average. This discouraged
the use of individual dot size as a proxy for number.

8. Results

Percent correct for each participant for each ratio was entered into a 4 Trial Type
(Scattered Random, Scattered Pairs, Column Pairs Mixed, Column Pairs Sorted)
×2 Stimulus Type (size-controlled, area-controlled) ×9 Ratio Repeated Measures
ANOVA. There was a significant effect of Ratio, as participants did better with
easier ratios: F(8, 72) = 13.811, p < .001; a significant effect of Trial Type, as
participants did better on Column Pairs Sorted trials: F(3, 27) = 47.016, p < .001;
no effect of Stimulus Type, as participants did equally well on size-controlled and
area-controlled trials: F(1, 9) = 1.341, p = .277; and a marginal Trial Type × Ratio
interaction, as participants did better on difficult ratios on Column Pairs Sorted
trials: F(24, 216) = 1.432, p = .094. Participants did equally well on size-controlled
and area-controlled trials, indicating that they relied on the number of dots and
not continuous variables such as area that are often confounded with number.
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Performance for each participant for each ratio was combined across Trial Type for
further analyses.

Planned Repeated Measures ANOVAs compared performance pair-wise for each
Trial Type. Performance on Scattered Random, Scattered Pairs, and Column Pairs
Mixed all patterned together with no significant differences, whereas performance
on each of these conditions was significantly worse than that on Column Pairs
Sorted trials. The F and p values for these comparisons are listed in Table 1. This
pattern can also be seen in Figure 7. Contrary to what would be expected from use
of a OneToOnePlus algorithm, performance on Scattered Random trials patterned
with performance on Scattered Pairs and Column Pairs Mixed, with percent correct
declining as a function of Ratio (# of larger set/ # of smaller set). Performance on
Column Pairs Sorted trials remained at ceiling for all ratios tested, suggesting that a
different process was used to verify ‘most’ on these trials.

If participants relied on the representations of the Approximate Number System
to verify ‘most’ on Scattered Random, Scattered Pairs, and Column Pairs Mixed
trials, performance on these trials should accord with a model of the psychophysics
of this system. We rely on a classic psychophysical model that has been used
by labs other than our own, indicating its acceptance in the literature (e.g.

Trial Types F p

Scattered Random-Scattered Pairs .216 .651
Scattered Random-Column Pairs Mixed .446 .518
Scattered Pairs-Column Pairs Mixed .127 .728
Column Pairs Sorted-Scattered Random 152.17 .0001
Column Pairs Sorted-Scattered Pairs 193.89 .0001
Column Pairs Sorted-Column Pairs Mixed 131.66 .0001

Table 1 Pairwise comparison of trial types
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Figure 7 Percent Correct versus Ratio (bigger # / smaller #) for the four conditions in Experiment 1
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Pica et al., 2004). The average percent correct at each ratio across participants is
modeled for each Trial Type as a function of increasing Ratio (larger set/smaller set,
or n2/n1). Pairs of numerosities are represented as Gaussian random variables X2
and X1, with means n2 and n1, and standard deviations equal to the critical Weber
fraction (w) · n. Subtracting the Gaussian for the smaller set from the larger returns
a new Gaussian, with a mean of n2-n1 and a standard deviation of w

√
(n12 + n22)

(simply the difference of two Gaussian random variables). Correlatively, subtracting
X2 from X1 returns a new Gaussian random variable that has a mean of n1-n2, and
percent correct can be calculated from this Gaussian as the area under the curve that
falls to the right of zero, computed as:

1
2 erfc

(
n1−n2√

2w
√

n2
1+n2

2

)
× 100

The one free parameter in this equation is the Weber Fraction (w). This parameter
determines percent correct for every Weber Ratio (n2/n1). The mean of subject
means for percent correct at each of the nine ratio bins, and the theoretically
determined origin of the function—50% correct at Weber Ratio = 1, where
the number of blue dots and yellow dots would in fact be identical—were fit
using this psychophysical model. As can be seen in Figure 8, the fits for Scattered
Random, Scattered Pairs, and Column Pairs Mixed trials fell directly on top of
one another. Table 2 summarizes the R2 values, the estimated Weber fraction, and
the nearest whole-number translation of this fraction for each fit. These R2 values
suggest agreement between the psychophysical model of the ANS and participants’
performance in the most-task (R2 values >.85). The Weber fraction on these trial
types suggests that participants relied on the representations of the Approximate
Number System to evaluate ‘most’.

The Weber fraction is expected to be approximately .14 for adults in number
discrimination tasks and ‘more’-tasks (Pica et al, 2005), and to range from .14− to .35

Figure 8 Fitted curves from a psychophysical model of the Approximate Number System, fit to
performance in each condition for Experiment 1
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Critical Weber Nearest Whole-Number
Trial Type R2 Fraction Ratio

Scattered Random .9677 .32 3:4
Scattered Pairs .8642 .33 3:4
Column Pairs Mixed .9364 .30 3:4
Column Pairs Sorted .9806 .04 25:26

Table 2 Parameter estimates from psychophysical model

in adults when participants are translating ANS representations into whole-number
values (via a ‘numeralizing waystation’), measured as the coefficient of variance
(Halberda, Sires and Feigenson, 2006; Whalen et al., 1999). Our estimate of a
Weber fraction of approximately .3 for three trial types suggests that participants
may be translating the representations of the ANS into whole number values via
some numeralizing waystation before evaluating ‘most’-sentences. For example,
when shown an array of 12 blue and 16 yellow dots, these subsets may activate
corresponding ANS representations of numerosity; and these values may be
translated into cardinal-number estimates, like ‘twelve’ and ‘sixteen’, for purposes
of evaluation. Further work is needed to determine if this is the case.

For comparison, we also fit the data from Column Pairs Sorted trials using the
same model of the psychophysics of the ANS. This is to allow a direct comparison
to the other 3 trial types, and not to suggest that participants are actually relying
on ANS representations on Column Pairs Sorted trials. As can be seen in Figure 8
and Table 2, this model returned a radically different fit for these data, suggesting a
Weber fraction of .04 or a whole number ratio of 25:26. While participants rely on
the representations of the ANS on Scattered Random, Scattered Pairs, and Column
Pairs Mixed trials, performance on Column Pairs Sorted trials suggests a different
process altogether. In fact, the estimated Weber fraction on Column Pairs Sorted
trials (Weber fraction = .04) is very similar to estimates (Weber fraction = .03)
from the literature for human adults detecting the longer of two line segments
(Coren, Ward and Enns, 1994). Displays for our Column Pairs Sorted trials were
constructed such that there is a perfect correlation between the number of dots
per subset and the overall length of the column. This means that participants could
attend only the length of the column to reach their decision, ignoring however
many dots it took to make the column, and translate their judgment of ‘longer blue
column’ into a ‘more blue dots than yellow dots’ answer without error. So even on
our Column Pairs Sorted trials, adults do not appear to be using a OneToOnePlus
strategy for verification. Rather, they are using column length as a proxy for number
(the perceptual ‘lines’ created by the blue and yellow columns).13

13 This notion of using column length as a proxy for number brings up issues of meaning versus
verification again. While the correlation of number and column length in the present case
empowers this type of verification procedure, we do not believe that the perceived line lengths
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We manipulated the ease of applying a OneToOnePlus strategy across trial type
and found no effect of this manipulation. But we found evidence that participants
relied on the representations of the ANS, representations that cannot be used to
implement a OneToOnePlus strategy. As discussed in the next section, these results
suggest that (at least for numerate adults), the meaning of ‘most’ is not specified
in terms of one-to-one correspondence. In the next section, we also consider
some alternative diagnoses of our results, and a related further question: do English
speaking adults understand ‘Most of the dots are yellow’ as consistent with ‘There
is one more yellow than nonyellow dot’, or does the ‘most’-claim imply that there
are significantly more yellow dots than nonyellow dots?

9. Other Possibilities

One can speculate that ‘most’ is understood in terms of correspondence, but that our
task constraints somehow precluded use of a OneToOnePlus algorithm. For several
related reasons, we think this is unlikely.

In two follow-up experiments, we obtained evidence that 200 ms is long enough
for subjects to determine the color of ‘loner’ dots in scenes where all the other
dots formed yellow-blue pairs. We first confirmed that this was enough time to
distinguish scenes with ‘scattered pairs’ (as in figure 6b above), from scenes with
randomly scattered dots (as in 6a). Each of 24 subjects saw 180 trials, 90 of each
type, with the ratio of yellow to blue dots varying as in the initial experiment. The
task was simply to classify the scenes, according to whether or not they exhibited
yellow-blue pairs (along with some loner dots). In the second study, stimuli were
limited to scenes with scattered pairs: a new group of 24 subjects saw 180 trials
each; but every scene had some loner dots of a single color. The task was to find
these extra dots, not paired with dots of the other color, and report their color.
Performance was as depicted in Figure 9.

As suggested by the comparison with data from our initial experiment, subjects
who had to determine the color of loner dots actually did better than subjects who
had to determine whether most dots are yellow. For scenes with scattered pairs, the
Weber Fraction in the main experiment was .33 (corresponding to a discriminability
ratio of about 3:4), while the Weber Fraction was .11 (corresponding to a
discriminability ratio of about 9:10) when the task was to report the color of loner
dots. So at least for these scenes, using a OneToOnePlus algorithm would have led
to good performance. But in the initial experiment, performance fit the ANS model

are supplying numerical values to the ‘most’ algorithm. Rather, the correspondence of the
‘most’ algorithm and a separate ‘longer-line’ algorithm are recognized by the system and the
subjects then simply performs the ‘longest-line’ algorithm and gives its answer as an answer for
a most question.
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Figure 9 Fitted curves from the psychophysical model for the Approximate Number System, fit to
performance in the follow-up experiments, along with performance in the initial experiment on Scattered
Pairs

quite tightly, with no symptoms of performance deteriorating for ‘non-pair-off’
scenes.14

This suggests that subjects (i) have the capacities required to quickly deploy a
OneToOnePlus algorithm, (ii) will use these capacities when the task is suitably
described, but (iii) do not use these capacities when the task is to evaluate ‘Most of
the dots are yellow’. This tells against hypotheses according to which the sentence
is understood as a OneToOnePlus claim.15

14 One might say that subjects were unable to use a OneToOnePlus strategy for these scenes, and
that this led them to adopt an ANS-based strategy for all scenes. But this begs the question:
if ‘most’ is understood in correspondence terms, why didn’t subjects adopt a correspondence
strategy, with a result of increased accuracy for pair-off cases and decreased accuracy for other
cases? We see no reason for thinking that our stimuli would have led subjects who understand
‘most’ in terms of correspondence to abandon a correspondence strategy.

15 Interestingly, even in the follow-up studies, performance showed a ratio effect. We can imagine
two diagnoses of this fact. One is for our imagined critic to shift gears, and say that 200 ms
is ample time to use a OneToOnePlus algorithm for all of our scenes: perhaps we didn’t
make it hard enough to pair off dots in ‘random’ scenes (like 6a); and perhaps our data from
the initial experiment reflects the need, in that task, to find pairs and identify loners—with
no real difference in difficulty across scenes with scattered dots. We cannot yet rule out this
possibility. But we find it more plausible that the ANS is immediately providing subjects with
information about numerosity that is hard to ignore: even when the task is simply to report the
color of loner dots, subjects are estimating dot numerosities; and as the ratio of yellows to blues
approaches unity, raising the corresponding uncertainty, subjects find it harder to commit to
a judgment—e.g. that the loner dots are yellow—which directly implies that there are more
dots of the color in question. That is, 200 ms may not be enough time to override the ANS and
adopt an alternative decision procedure that is more accurate in the case at hand. But then the
OneToOnePlus hypothesis implies that speakers understand ‘most’ in terms of an algorithm
that (i) cannot make use of relevant information that is made available immediately, but (ii)
somehow leads to performance that matches the model of how subjects would perform if they
used the information the ANS provides.
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This highlights a fact that we want to stress. The main experiment itself tells against
the hypothesis that ‘most’ is understood in terms of one-to-one correspondence.
For whatever ‘most’ means, participants were clearly able to use their ANS system
to evaluate the target sentence. This is striking, but not inexplicable, if ‘most’ is
understood in terms of cardinality comparison. Independent evidence suggests that
the ANS interfaces, somehow, with representations of precise cardinalities; and
given a ‘waystation’ of the sort described above, our data is easily accommodated
under a meaning for ‘most’ based in cardinalities. On the other hand, if ‘Most dots
are yellow’ is understood as the claim that some of the yellow dots correspond one
to one with all of the nonyellow dots, then participants must somehow evaluate
this claim by using information provided by their ANS. But the only plausible
‘interfacing’ mechanisms make the OneToOnePlus hypothesis unattractive.

Prima facie, this hypothesis requires a mind that can do the following in 200 ms:
generate a semantic representation of ‘Most dots are yellow’; generate (presumably
in parallel) an ANS representation of the relevant scene; and then exploit some
strategy for using the latter representation to answer the question posed by the
former. This presumably requires two waystations: one to ‘convert’ ANS information
into a comparison of cardinalities (or perhaps fuzzy analogs); and another, effectively
implementing one direction of (HP), to use the cardinality comparison as a way of
answering the OneToOnePlus question posed by ‘Most dots are yellow’.

By itself, the ANS is of no use in evaluating claims concerning one-
to-one correspondence, since ANS representations are not representations of
particular entities. Approximations of collection-numerosities are useful, but not
for determining whether each nonyellow dot has a corresponding yellow dot—at
least not without a lot of extra cognitive apparatus. Moreover, if speakers can and
do connect the lexical item ‘most’ to both the ANS system and something like
tacit knowledge of (HP), that undercuts much of the motivation for analyzing
‘most’ in terms of one-to-one correspondence. For knowledge of (HP) will require
knowledge of cardinalities which OneToOnePlus was supposed to avoid.

In response, one might say that participants do try to use a OneToOnePlus
algorithm, but that their performance is error-prone at 200 ms. But this makes it
mysterious why performance declines as a function of decreasing Ratio (i.e. as the
number of yellow dots and blue dots becomes closer performance declines). An
errorless OneToOnePlus algorithm would not show this decrement in performance.
But an error-prone OneToOnePlus algorithm might accidentally use an individual
dot to cancel out more than one competitor (e.g. using a dot twice), or fail to
use a particular dot altogether. As the yellow dots and blue dots become closer in
number, such errors would become increasingly relevant to performance, leading
to decreasing accuracy. This correctly predicts decreasing performance as a function
of decreasing Ratio. But as we shall see, it would still fail to account for a subtlety
in the present data.

For any particular trial included in (say) the 3:4 ratio bin, the number of items
included for a single color could vary from as few as 5 to as many as 16 items, so
that one trial might include 6 yellow and 8 blue dots while another might contain
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12 yellow and 16 blue dots. An error-prone OneToOnePlus algorithm predicts a
difference in performance between these two trials. Because the two possible errors
described above for an error-prone OneToOnePlus algorithm work in opposite
directions (i.e. using a particular dot more than once and failing to use a particular
dot at all), these errors would tend to cancel one another out stochastically, as the
total number of dots in a display increases. That is, performance should be better on
a 12 yellow versus 16 blue dots trial than on a 6 yellow versus 8 blue dots trial. More
generally, use of an error-prone OneToOnePlus procedure predicts an effect of
increasing accuracy with increasing number of dots in the display when ratio is held
constant (Cordes et al., 2001). We tested this prediction with a linear regression on
subject means, with percent correct as the dependent variable, and Ratio and Total
number of dots in the display as dependent variables. This analysis allows us to ask
the following question: while controlling for any possible effects of Ratio, is there
any evidence that participants did better as the Total number of dots in the display
increased? Contrary to the predictions of an error-prone OneToOnePlus algorithm
we found a marginally significant result in the opposite direction: t(367) = −1.952,
p = .052, slope = −.365. Participants did slightly worse within each Ratio as the
Total number of items in the display increased. This analysis shows no support for an
error-prone OneToOnePlus algorithm, and remains consistent with the hypothesis
that participants relied on the stochastic representations of the ANS—especially
given considerations about possible guessing in participants, or perceptual crowding,
which might lead to the slight negative slope.16

A related thought is that participants might understand ‘Most of the dots are
yellow’ as implying that the number of yellow dots is significantly greater than
the number of nonyellow dots. Perhaps ‘most’ imposes the more demanding
requirement that there be significantly more yellow dots (by some measure of
significance). On this view, a situation with 10 yellow dots and 9 blue dots (≈ 52%
yellow) might not make ‘Most of the dots are yellow’ true, even if situations with
14 yellow dots and 9 blue dots (≈ 60% yellow) would. This hypothesis predicts
a decrease in participants’ willingness to assent to ‘Most of the dots are yellow’ as
Ratio decreases (i.e. as the ratio of yellow to nonyellow dots moves closer to 1:1),
independent of whether the more demanding meaning is rooted in cardinalities

16 Because comparisons made in the ANS are ratio-dependent, the discriminability of 6 yellow
versus 8 blue dots would match that for 12 yellow versus 16 blue dots. If subjects are relying on
the ANS to evaluate ‘most’ then there should be no effect of the total number of items involved
in a display and only an effect of the ratio between the two sets. Two possible reasons for the
slight decrease in performance (i.e. a decrease of–.365% per dot) as a function of increasing
Total number of dots in the display are that increased dots led to increased perceptual crowding
making it harder for the ANS to generate accurate estimates of numerosity or that increasing
Total number of dots in the display led to an increased tendency for participants to randomly
guess, as if participants felt that when there were many dots in the display the task was harder
(a similar effect has been seen in other tasks that engage the ANS for purposes of speeded
comparative judgements: Pica et al., 2004). Thus, the present analysis shows no evidence for
an error-prone OneToOnePlus algorithm and remains consistent with the hypothesis that
participants relied on the stochastic representations of the ANS.
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or in OneToOnePlus. If participants understood ‘most’ in this way, our observed
result of a decrease in performance with decreasing Ratio could not be taken as
evidence against OneToOnePlus. But subtleties in the data reveal that participants
did not behave as if they were computing the more demanding (‘significantly more’)
meaning. Rather, they behaved as if one extra yellow dot makes ‘Most of the dots
are yellow’ true.

First, when participants had an easy way of determining that the cardinality of the
yellow dots was greater than the cardinality of the nonyellow dots, they maintained
that 10 yellow dots and 9 nonyellow dots was an instance of most dots being
yellow. This was the case on the Column Pairs Sorted trials in our experiment, in
which participants relied on the length of the sorted columns as a proxy for number
(Figures 7 and 8). In 94% of the relevant trials, participants treated scenes with 10
yellow and 9 blue dots as scenes described by ‘Most of the dots are yellow’ (see the
data point furthest to the left in Figures 7 and 8 for Column Pairs Sorted trials).

Second, on the other three trial types (Scattered Random, Scattered Pairs, and
Column Pairs Mixed) performance accorded with a psychophysical model that
predicts that a single extra yellow dot suffices for the truth of ‘Most of the dots are
yellow’. Graphically, this can be seen in the fitted curves depicted in Figure 8: these
curves do not cross the x-axis (chance performance) until a Ratio of 1. This model
predicts that participants will tend to answer the test question affirmatively—though
the tendency may be slight—for any detectable positively signed difference between
the yellow and nonyellow dots, up to a Ratio of 1. So the best fit model of partic-
ipants’ performance predicts that any situation with at least one more yellow than
nonyellow dot is a situation in which ‘Most of the dots are yellow’ counts as true.

Moreover, if participants understood ‘most’ as implying significantly more (as
opposed to at least one more), their accuracy should have systematically deviated from
the model as Ratio decreased. As the cardinality of the yellow dots became closer to
the cardinality of the nonyellow dots, any participant who understood ‘most’ in the
more demanding way should have refrained from assenting to ‘Most of the dots are
yellow’ in a way not predicted by the model based on the less demanding meaning.
So as the Ratio approaches 1, the model becomes a less accurate representation of
anyone who understands ‘most’ as implying significantly more. To check for such
deviation from the model, we calculated participant means for percent correct for
each ratio bin across the three trial types (Scattered Random, Scattered Pairs, and
Column Pairs Mixed). The signed deviations of these means from the psychophysics
model are plotted in Figure 10.

Differences between percent correct and the psychophysics model were centered
on zero and varied randomly from +6% to −6% with no tendency for these
deviations to increase as Ratio moved closer to 1. This means that participants
behaved in accord with the psychophysics model, according to which one extra
yellow dot suffices (up to the stochastic limits of the ANS to detect this difference)
for judging that most dots are yellow.
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Figure 10 Signed deviations of participant means from the psychophysics model

10. Summary and Concluding Remarks

In this paper, we have used psychophysical methods to adjudicate between hypothe-
ses about ‘most’ that are equivalent by standard semantic tests. The meaning of
‘most’ can be described in terms of a relation (GreaterThan) that holds between the
cardinalities of two sets, or in terms of a correspondence relation (OneToOnePlus)
that holds between the individual elements of those sets. Because these characteriza-
tions are mathematically equivalent, there cannot be any situation that distinguishes
them. So to determine which corresponds to the mental representations of compe-
tent speakers of English, one must find evidence that distinguishes hypotheses that
are truth conditionally equivalent. In our view, the processes involved in evaluating
a sentence with ‘most’ provide such evidence.

Our experimental data reveals two important points. First, despite our attempts
to make evaluation of ‘Most dots are yellow’ easy given a OneToOnePlus meaning,
we found no evidence that English speakers invoke algorithms that take advantage
of one-to-one pairings of individuals in deciding whether a sentence using ‘most’
is true in a given situation. Second, and more positively, our data show that
the Approximate Number System (ANS) is implicated in the algorithms used in
computing the applicability of ‘most’.

Again, we grant that a OneToOnePlus strategy can be used to evaluate a ‘most’-
claim in some settings. But subjects in our study did not use such a strategy. One
might maintain that ‘most’ is still understood in terms of correspondence, but that
for whatever reason, our trials did not invoke a OneToOnePlus algorithm. Given
a specific proposal, specific further evidence—e.g. that subjects can quickly classify
displays as ‘scattered’ or not—will be relevant. But note that our second point
argues against the general idea that ‘most’ is understood in terms of correspondence.
The ANS can be used to straightforwardly evaluate ‘Most of the dots are yellow’
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only if this sentence is understood in terms of cardinality comparison. So if the
sentence is understood in terms of correspondence, then given our positive result
that participants relied on the ANS for evaluation, an initial OneToOnePlus
representation would have to be transformed in order to make use of the ANS.
But this would seem to require a psychological realization of (HP), along with a
suitable capacity to represent cardinalities, thus undercutting the initial attractions
of the idea ‘most’ is understood in terms of correspondence. If competent speakers
can (i) represent the yellow dots as having a greater cardinality than the other dots,
and (ii) use the ANS to estimate these cardinalities, why think they understand
‘most’ in terms of OneToOnePlus—and thus employ an evaluation procedure more
complicated than the one we propose—absent specific empirical motivation?

In this sense, our second result is the more important. And as noted above, it is
compatible with either of two scenarios. First, adults might represent the meaning
of ‘most’ in terms of a comparison of magnitudes. Instead of (5a), perhaps a better
meaning specification is (5a’):

(5a) #{x: Dot(x) & Yellow(x)} > #{x: Dot(x) & ¬Yellow(x)}
(5a’) G{x: Dot(x) & Yellow(x)} � G{x: Dot(x) & ¬Yellow(x)},

where ‘G’ signifies a mapping (not from sets to cardinal numbers, but rather) from
sets to Gaussian curves, each of which has a mean and a standard deviation, and ‘�’
signifies a comparison (not of cardinal numbers, but rather) of Gaussians.

A second possibility is that (5a), interpreted standardly in terms of cardinal
numbers, correctly represents the meaning of ‘most’—but estimates of relevant
cardinalities are supplied on-line by the ANS. Further experiments will be required
to determine which of these two possibilities obtains.

A related question is whether participants in our experiment were actually com-
puting the meaning of the stimulus question (‘Are most of the dots yellow?’) on
every trial, or whether they might have converted it into a question with the
word ‘more’. Since each trial contained dots of exactly two colors, most of the
dots were yellow iff there were more yellow dots than dots of the other color
(blue). This is a serious issue. But note that our questions about ‘most’, and the
related number-relevant representations, also apply to ‘more’ (i.e. ‘more’ might
be understood as Cardinality-more or as OneToOnePlus-more). Our results stand
as an important test of these representations, independent of whether participants
interpreted the task as asking a ‘most’- question or a ‘more’-question. And in one
sense, ‘most’ must be deeply related to ‘more’: most �s are �s iff the �s that are
�s are more than the �s that are not �s. But how do speakers understand the claim
that there are more of these than those?

Does it mean that these have a greater cardinality than those, or that these
correspond OneToOnePlus with those, or something else? To the best of our
knowledge, these issues remain unsettled by the literature on ‘more’. That said, our
participants did appear to engage the task as asking a ‘most’-question, and they did
not report translating this into a ‘more’-question. In ongoing work, we examine
whether performance (on ‘Are most of the dots yellow’) changes as a function of
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increasing the diversity of items in the contrast set—e.g. by presenting arrays with
yellow, blue, green and red dots—since ‘more’-judgments and ‘most’-judgments
can be teased apart in scenes with dots of several colors (Lidz, Hunter, Pietroski and
Halberda, submitted)

Finally, we want to stress that this kind of research, relating the cognitive
science of number to the lexical semantics of natural language quantifiers, lets
one ask questions about meaning that often go unaddressed for lack of relevant
evidence. Every semanticist knows that for any given expression, there will be
many truth-conditionally equivalent ways of describing its meaning. Given such
equivalences, choosing among alternatives requires appeal to other considerations,
often concerning compositionality or theoretical parsimony. In the current case, we
have argued that the evaluation procedures involved in understanding may provide
some insight into the semantic representations themselves. And as we have argued,
aspects of cognition that provide content for the linguistic system—in this case,
the Approximate Number System—may place constraints on the representational
vocabulary of the lexicon itself.

Department of Linguistics
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