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Jeffrey Lidz

Linguistics Department, University of Maryland

We identify three components of any learning theory: the representations, the learner’s data intake,

and the learning algorithm. With these in mind, we model the acquisition of the English anaphoric

pronoun one in order to identify necessary constraints for successful acquisition, and the nature of

those constraints. Whereas previous modeling efforts have succeeded by using a domain-general

learning algorithm that implicitly restricts the data intake to be a subset of the input, we show that

the same kind of domain-general learning algorithm fails when it does not restrict the data intake.

We argue that the necessary data intake restrictions are domain-specific in nature. Thus, while a

domain-general algorithm can be quite powerful, a successful learner must also rely on domain-specific

learning mechanisms when learning anaphoric one.

1. INTRODUCTION: DOMAIN GENERALITY AND DOMAIN SPECIFICITY

Vast quantities of ink and hard feelings have been spilt and spawned on the nature of learning in

humans and other animals. Are there domain-specific learning mechanisms or is learning the

same across all domains? One of the most frequent battlegrounds in this debate is the case of

human language learning. Is there a domain-specific language acquisition device or does

language acquisition rely solely on domain-general learning mechanisms? We believe that the

phrase “domain-specific learning” can be and has been interpreted in several distinct ways,

leading to the illusion of incompatibility with domain-general learning. However, by examining

these interpretations, we believe these two viewpoints can be successfully synthesized to explain

language-learning phenomena. In the current paper, we bring this synthesis to the fore through a

single, somewhat narrow, case study.

There are three pieces to any learning theory. First, learners must have a way of representing

the data to be learned from. In the domain of language learning, these would be the linguistic

representations, such as phonemes, morphemes, and phrase structure trees. If learners come

Correspondence should be addressed to Lisa Pearl, Department of Cognitive Sciences, 3151 Social Science Plaza A,

University of California, Irvine CA 92697. E-mail: lpearl@uci.edu
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236 PEARL AND LIDZ

equipped with a space of possible linguistic representations, then we have a domain-specific

representational format in our learning theory. On the other hand, if learners represent the infor-

mation in the input in terms of co-occurrence probabilities between properties of the acoustic

signal, for example, then we do not have a domain-specific representational format in our learning

theory. Of course, it is possible that domain-specific representations can be constructed out of the

domain-general representations of the input. In this case, then, we do not have domain-specific

representations initially; instead, we would have domain-specific representations as the output

of learning.

Second, learners must identify which data to learn from. For language learning, one might

propose that only some data are used by the learner. For example, Lightfoot (1991) proposes

that main clause data are privileged for the learner; data in embedded clauses are initially

ignored for the purposes of grammar learning. Because such filters are defined over the linguistic

representations, they instantiate domain-specific filters on data intake. On the other hand, if

what looks like a constraint against embedded clause data was in fact due to learners having

only a finite amount of working memory, causing them to use, say, only the first four words of

an utterance, this would be a domain-general filter (though it operates over the domain-specific

representation of words). As with the representations, it is possible that a domain-specific filter

is the output of a domain-general procedure. For instance, if the learner has domain-specific

representations such as main clauses and embedded clauses, a finite working memory constraint

might lead to using the first structural “chunk” available (i.e., the main clause data). Of course, it

is also possible that learners treat all of their linguistic information sources equally and that there

is no constraint from the learning mechanism on what data are relevant for learning.

Third, learners must have a way of updating their knowledge on the basis of the selected data.

Any learning algorithm that is used only for language learning (e.g., Fodor, 1998a) would count

as an example of a domain-specific learning procedure. On the other hand, if the same learning

algorithm is used across different domains (e.g., Bayesian learning, Tenenbaum & Griffiths,

2001, among many others), then the learning algorithm is domain general.

In principle, it is an independent question for each aspect of the learning theory whether it (or a

constraint on it) is domain-specific or domain-general. Although these subparts of the learning

theory have typically been equated, they are in fact separate and should be addressed independently.

Any one of these components might be domain general while the others are domain specific. This is

how we can reconcile the opposing viewpoints on linguistic nativism. In the current paper, we

provide a case study in which we show that a learner using a domain-general learning algorithm

can succeed, but only when also employing domain-specific filters on the data intake. Thus, the

successful learner is using both domain-specific and domain-general learning mechanisms—not

just one or the other.

1.1. The Chosen Case Study

The phenomenon under investigation is the interpretation of the anaphoric element one in

English. Two different levels of representation must be considered for interpreting anaphoric

one: the syntactic level and the semantic level. At the syntactic level, the infant must identify the

linguistic antecedent of one; at the semantic level, the infant must determine what object in the

world a noun phrase (NP) containing one refers to. Both of these levels contribute to the

information a learner would use when converging on the correct representation of one, since a
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DOMAIN-GENERAL LEARNING AND DOMAIN SPECIFICITY 237

linguistic antecedent (syntax) can be translated into a reference to an object in the world (semantics),

and vice versa. In terms of learning, the syntactic antecedent and the semantic reference are

interconnected: the syntactic antecedent of one has semantic consequences on what referents are

picked out, while the semantic referent has syntactic implications of what the linguistic antecedent

is. Learners can thus use multiple sources of information to inform their hypotheses about the

interpretation of anaphoric one in a given context, and use these conclusions to identify the

appropriate grammatical representation underlying the use of one.

The case of anaphoric one learning has received considerable attention recently, as the

linguistic knowledge determining its antecedent was previously considered unlearnable given the

sparseness of unambiguous data (e.g., Baker, 1978; Hornstein & Lightfoot, 1981; Crain, 1991).

However, computational modeling work has suggested that the correct representation of anaphoric

one can be learned from a predefined hypothesis space by using a domain-general learning model

that capitalizes on the relationship between the different hypotheses in the hypothesis space

(Regier & Gahl, 2004, hereinafter referenced as Regier & Gahl). Using this hypothesis space infor-

mation, the model is able to gain information from ambiguous data as well, and in fact can con-

verge on the correct hypothesis for anaphoric one even if no unambiguous data are encountered.

Although this is a substantial achievement, the data used by Regier and Gahl’s model were

restricted to a subset of the available data—and so there was an implicit filter on the learner’s

data intake. As Regier and Gahl note (and we agree), “learning of any sort is impossible without

constraints of some kind.” The key question then is which constraints are necessary and whether

the necessary constraints are domain-specific or domain-general. Here, we demonstrate that this

particular data intake filter is, in fact, a necessary constraint for successful learning of anaphoric

one. Further, we argue that it can be effectively implemented only by appealing to domain-specific

knowledge. Anaphoric one is a single case study, but this general line of approach to identifying

the necessary constraints on language acquisition, as well as the nature of those constraints, is

one computational modeling is particularly suited for, and one that is increasingly being pursued

(for recent examples, see Perfors, Tenenbaum, & Regier, 2006; Pearl, in press; Foraker, Regier,

Khetarpal, Pefors, & Tenenbaum, 2009).

1.2. This Article’s Plot

The remainder of the article proceeds as follows. First, we briefly describe the syntactic and

semantic representations of anaphoric one and review the behavioral evidence indicating that

18-month-olds have acquired the adult representation of anaphoric one. We then assess the data

an 18-month-old would have encountered in the input and note the infrequency of the available

unambiguous data. Following this, we review Regier and Gahl’s model that uses a domain-general

learning algorithm, and we also observe that this model includes implicit constraints on data

intake. To gauge the learning algorithm’s performance without these implicit constraints, we

extend their model so that it can learn from all available data, thereby removing the data intake

constraints. We find that such a model fails to converge on the adult representations of

anaphoric one with high probability, unlike what we see in 18-month-olds. We subsequently

identify the source of the new model’s failure and find that it is due to the abundance of a particular

kind of ambiguous data available in the input. When this subset of ambiguous data is ignored by

the learner, the model succeeds with high probability, as Regier and Gahl found in their original

model. Because the unconstrained data intake is the problem, this suggests that successful learning
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238 PEARL AND LIDZ

of anaphoric one from these same data requires some bias on the data intake. We conclude with

some speculation on how a learner might know to ignore the troublesome data, highlighting that

such behavior is likely to derive from domain-specific knowledge.

2. ANAPHORIC ONE

2.1. Adult Knowledge: Syntactic Representations

For English-speaking adults, the element one is anaphoric to strings that are classified as N’

(i.e., one’s antecedent is an N’ string) and not N0, as in example (1) below. The structures for the

N’ strings are represented in Figure 1. We note that the precise labels of the constituents are

immaterial; it is important only that there is a distinction between the relevant constituents,

represented here as N’ and N0.

(1a) One is anaphoric to N’ (ball is antecedent)

“Jack likes this ball. Lily likes that one.”

(1b) One is anaphoric to N’ (red ball is antecedent)

“Jack likes this red ball. Lily likes that one.”

These representations encode two kinds of information: constituency structure and category

structure. The constituency structure tells us that in a noun phrase containing a determiner (det:

this), adjective (adj: red), and noun (N0: ball), the adjective and noun (red ball) form a unit

within the larger NP. The fact that one can be interpreted as a replacement for those two words,

as in (1b), tells us that those two words form a syntactic unit. The category structure tells us

which pieces of phrase structure are of the same type. Because one can replace both ball and red

FIGURE 1 Structures for the N’ strings this ball and this red ball.
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DOMAIN-GENERAL LEARNING AND DOMAIN SPECIFICITY 239

ball, both ball and red ball are of the same category: type N’. See Appendix A for a more

detailed argument about the category structure of one.

2.2. Adult Knowledge: Pragmatics and Semantic Reference

In addition, when there is more than one N’ to choose from, as in (1b) above, adults prefer the

N’ corresponding to the longer string (red ball). For example, in (1b) an adult (in the null

context) would often assume that the ball Lily likes is red—that is, the referent of one is a ball that

has the property red (cf. Akhtar, Callanan, Pullum, & Scholz, 2004). This semantic consequence is

the result of the syntactic preference for the larger N’ red ball. If the adult preferred the smaller

N’ ball, then the semantic consequence would be no preference for the referent of one to be red,

but rather for it to have any property at all. Note, however, that this preference is not categorical.

It is straightforward to find cases in which it is overridden, as in (2):

(2) “I like the yellow bottle, but you like that one.”

Here, it is quite easy to take one to refer to bottle and not yellow bottle.

2.3. Children’s Knowledge: Behavioral Evidence

But do children prefer one to be anaphoric to an N’ string (and more specifically the larger N’

string if there are two), rather than to an N0 string? If so, the semantic consequence would be

readily apparent: The antecedent for one would include the modifier (e.g., red), and hence the

referent of one should include the properties mentioned by modifiers in the antecedent. Lidz,

Waxman, and Freedman (2003, hereinafter referred to as Lidz et al.) conducted an intermodal

preferential looking paradigm experiment (Golinkoff, Hirsh-Pasek, Cauley, & Gordon, 1987;

Spelke, 1979) to see if 18-month-olds did, in fact, show this behavior.

The 18-month-olds demonstrated a significant preference for looking at the referent that had

the same property mentioned in the N’ string (e.g., looking at a bottle that was red when the N’

string red bottle was a potential antecedent). Lidz et al. explained this behavior as a semantic

consequence of the syntactic preference that one be anaphoric to the larger N’ string (red bottle).

Because infants preferred the larger N’ string (as adults do) and this larger N’ string could not be

classified as N0, Lidz et al. concluded that the 18-month-olds have the syntactic knowledge that

one is anaphoric to N’ strings in general. In addition, they have the adult pragmatic preference to

choose the referent corresponding to the larger N’ string when there is more than one N’ ante-

cedent, though this was not the focus of that work.

2.4. Data for Learning the Antecedent of Anaphoric One

To estimate the data available to children by 18 months, we should consider that learning the

syntactic category and related semantic interpretations of one can commence only once the child

has some repertoire of syntactic categories. We posit that the anaphoric one learning period

begins at 14 months, based on experimental data supporting infant recognition of the category

Noun and the ability to distinguish it from other categories such as Adjective at this age (Booth

& Waxman, 2003). If children hear approximately 1,000,000 sentences from birth until 18

months (Akhtar et al., 2004), then they should hear approximately 278,000 sentences between
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240 PEARL AND LIDZ

14 months and 18 months. We can use the data frequencies found in Lidz et al.’s corpus analysis

to estimate the expected distribution of anaphoric one data during this learning period. Of the

278,000 data points heard, 4,017 are likely to be anaphoric one data points. The expected distri-

bution of these 4,017 data points is shown in Table 1.

All data are defined by a pairing of utterance and environment. Unambiguous data have

properties similar to (3). Because Lily does indeed have a ball, the antecedent of one cannot be

ball. However, Lily’s ball is not red, so the antecedent of one can be red ball. Because red ball

can be classified only as N’, these data are unambiguous evidence that one is anaphoric to N’.

Moreover, because the antecedent is red ball, and not simply ball, this data point highlights that

the larger N’ constituent should be chosen when multiple N’s are available.

(3) Unambiguous example:

Utterance: “Jack wants a red ball. Lily doesn’t have one for him.”

Environment: Jack wants a red ball, but Lily doesn’t have a red ball; she has a ball with

different properties.

Type I ambiguous data have properties similar to (4a) or (4b). For data similar to (4a), Lily

has a ball, so the antecedent of one could be ball. However, the ball Lily has is red, so the

antecedent of one could be red ball. Because ball could be classified as either N’ or N0, these

data are ambiguous between one anaphoric to N’ and one anaphoric to N0. In addition, they

are also ambiguous between the smaller N’ constituent (ball) and the larger one (red ball),

even if one is known to be anaphoric to N’. For data similar to (4b), Lily does not have a ball,

but it is unclear whether the ball she does not have has the property red. For this reason, the

antecedent of one is again ambiguous between red ball and ball, and one could be classified

as either N’ or N0.

(4a) Type I ambiguous example:

Utterance: “Jack wants a red ball. Lily has one for him.”

Environment: Lily has a ball for Jack, and it has the property red.

TABLE 1

The Expected Distribution of Utterances in the Input to Children 

Between 14 and 18 Months

Data Type # of data points

Unambiguous 10

“Jack wants a red ball. Lily doesn’t have one for him.”

(Lily doesn’t have a ball with the property red, but she does have a ball.)

Type I Ambiguous 183

“Jack wants a red ball. Lily has one for him.”

(Lily has a red ball for Jack.)

Type II Ambiguous 3805

“Jack wants a ball. Lily has one for him.”

(Lily has a ball.)

Ungrammatical 19

“. . . you must be need one.”
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DOMAIN-GENERAL LEARNING AND DOMAIN SPECIFICITY 241

(4b) Another type I ambiguous example

Utterance: “Jack wants a red ball. Lily doesn’t have one for him.”

Environment: Lily doesn’t have a ball at all.

Type II ambiguous data have properties similar to (5a) or (5b). For both forms of type II

ambiguous data, the antecedent of one must be ball. However, because ball can be classified as

either N’ or N0, such data are ambiguous with respect to what one is anaphoric to.

(5a) Type II ambiguous example:

Utterance: “Jack wants a ball. Lily has one for him.”

Environment: Lily has a ball for Jack.

(5b) Another type II ambiguous example:

Utterance: “Jack wants a ball. Lily doesn’t have one for him.”

Environment: Lily does not have a ball at all.

Ungrammatical data involve a use of anaphoric one that is not in the adult grammar, such as

in (6). Because the utterance is already ungrammatical, it does not matter what environment it is

paired with. The child will presumably be unable to resolve the reference of one. Such data are

therefore noise in the input and are presumably ignored by the child.

(6) Ungrammatical example (taken from CHILDES, MacWhinney, 2000):

Utterance: “. . . you must be need one.”

3. LEARNING ANAPHORIC ONE

The vast majority of the anaphoric one input consists of type II ambiguous data (3,805 of 4,017,

94.7%), while type I ambiguous data make up a much smaller portion (183 of 4,017, 4.5%).

Ungrammatical data are quite rare (19 of 4,017, 0.5%) and unambiguous data rarer still (10 of

4,017, 0.25%). Because Lidz et al. considered unambiguous data as the only informative data (as

did many linguists before them), they concluded that such data were far too sparse to definitively

signal to a child that one is anaphoric to N’.

The argument has the form of a proof by contradiction. If we assume that the hypothesis

space of possible antecedents for anaphoric forms includes both heads (N0, in this case) and

phrasal categories (N’ or NP), then there is not sufficient unambiguous information telling

against the N0 hypothesis. Given that no learner acquires N0, the assumption that it was included

in the hypothesis space should be rejected.

This argument based on data sparseness seems in line with theory-neutral estimations of the

quantity of data required for acquisition by a certain age (Legate & Yang, 2002; Yang, 2004).

Specifically, other linguistic knowledge acquired by 20 months required at least 7% unambiguous

data (Yang, 2004, referencing Pierce, 1992). At least 1.2% unambiguous data was required for

acquisition by 36 months (Yang, 2004, referencing Valian, 1991). So, independent of what

acquisition mechanism is assumed, having 0.25% unambiguous data makes it unlikely that the
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242 PEARL AND LIDZ

child would be able to acquire the correct representation of anaphoric one by 18 months solely

from the unambiguous data. In sum, the conclusion of this argument is that the child’s learning

mechanism includes a constraint against taking heads (such as N0) as possible antecedents for

anaphoric elements (such as one). It is this conclusion that Regier and Gahl’s model calls into

question.

3.1. Using Ambiguous Data

Regier and Gahl’s model offers a solution to the problem posed by the sparseness of unambiguous

data: learners can use a domain-general learning algorithm that extracts information from

ambiguous data as well, based on the relationships between the different hypotheses the child

considers for anaphoric one. This gives the child significantly more data to learn from. Given

the utility of the ambiguous data, Regier and Gahl argue that the hypothesis space can include

the hypothesis that heads such as N0 can serve as antecedents to anaphors such as one after all.

Thus, learners do not need a specific constraint against taking heads as antecedents as a part of

an innate universal grammar. The power of Regier and Gahl’s model comes specifically from

learning from the type I ambiguous data. This is an attractive strategy, because there are nearly

20 times as many type I ambiguous data points as there are unambiguous data points (183 to 10).

This raises the useable data for the child up to 4.8% (193 of 4,017), which seems more in line

with the amount required for acquisition as early as 18 months (Yang, 2004).

To understand how Regier and Gahl’s model works, consider a type I ambiguous data point,

such as the utterance “Jack wants a red ball, and Lily has one for him,” paired with the situation

in which Lily has a red ball. One could have either red ball (an N’ string) or ball (an N’ or N0

string) as its syntactic antecedent. Even though the referent is the red ball Lily is holding, it is

unclear whether the property red is important without knowing which string is the antecedent. If

the antecedent is red ball, then it matters that the ball has the property red; if the antecedent is ball,

it does not. If the antecedent is red ball, then the antecedent’s category must be N’; otherwise, the

category can be either N’ or N0. Thus, all the relevant knowledge for anaphoric one can be

derived from knowing whether the property red is important for the referent to have.

A Bayesian learner can observe the distribution of referents of one for all the data points of

this type in order to determine if the property red is important. If it is always the case that when

there is an observable referent that referent has the property mentioned in the larger N’ string

(red in our example), then the Bayesian learner will believe it increasingly likely that the referent

must have that property. This then implicates the larger N’ string (red ball) as the antecedent,

and one’s category as N’.

This learning strategy is captured implicitly in the Size Principle (Tenenbaum & Griffiths,

2001) that a Bayesian learner can use, and which children also seem to use (Gerken, 2006; Xu &

Tenenbaum, 2007). Crucially, the Size Principle operates only when there is a certain relationship

between the hypotheses the learner considers—specifically, when one hypothesis is a subset of

the other. We can demonstrate the necessary subset relationship by considering the possible

referents of anaphoric one.

For the type I ambiguous example given above, one hypothesis is that the property mentioned

in the antecedent (red) is not important. Given this, the potential referent does not need to have

that property. The set of potential referents is the set of all balls, as shown in the shaded portion

of Figure 2a. The alternative hypothesis is that the property mentioned in the antecedent is
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DOMAIN-GENERAL LEARNING AND DOMAIN SPECIFICITY 243

important and the potential referent must have that property. The set of potential referents is then

the subset of red balls, as shown in the shaded portion of Figure 2b.

These are the Bayesian learner’s expectations of what will be observed in the data, given

each hypothesis. If the property red is not important, then referents both with and without the

property red should be observed. However, if only referents with the property red keep being

observed, then this is a conspicuous coincidence if the property red is not important. Even

though it is possible that a red ball is the referent when any ball will do (the red ball is ambiguous

between indicating the set of red balls vs. the set of balls), it grows increasingly improbable that

only red balls are ever observed. Why wouldn’t some other kind of ball appear as the referent

once in a while?

More formally, it is highly unlikely that the referent of one is only ever a member of the subset

of red balls if the referent could be any member of the superset of balls. We would expect to see

at least one example of a non-red ball, which would unambiguously indicate the superset of balls is

correct, and not the subset of red balls. If this continues to not happen, and only red ball referents

are observed, the Bayesian learner considers a restriction to the subset of red balls to be more

and more probable. This is the more precise instantiation of the size principle of Tenenbaum and

Griffiths (2001): if there is a choice between a subset and the superset, and only data from the

subset are seen, then the learner will be most confident that the subset is the correct hypothesis

(often represented as giving the subset hypothesis a higher probability). Thus, the learner uses

the lack of data for the superset as indirect evidence that the subset hypothesis is correct.

The amount the subset hypothesis is rewarded when a subset data point is observed depends

on the relative sizes of the subset and superset. If the superset (BALLS) has many more mem-

bers than the subset (RED BALLS), then the likelihood of drawing a specific member from the

subset (a RED BALL) when any member from the superset could have been chosen is low

(Figure 3a). In other words, it is a conspicuous coincidence. The amount the subset hypothesis

(RED BALLS) is rewarded given a subset data point (a RED BALL) in this case is then larger. In

contrast, if the superset (BALLS) has only a few more members than the subset (RED BALLS),

the likelihood of drawing a specific member from the subset (a RED BALL) when any member

from the superset could have been chosen is higher (Figure 3b). This is not nearly so conspicuous

FIGURE 2 (a) The set of potential referents for one if the property red is

not important. (b) The set of potential referents for one if the property red

is important.
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a coincidence. The amount the subset hypothesis (RED BALLS) is rewarded given a subset data

point (RED BALL) in this case is then smaller. This effect of the size principle will become

important in sections 3.4 and 4, when we consider different variants of a Bayesian learner.

By learning from both unambiguous and type I ambiguous data points, Regier and Gahl’s

model can indeed learn the correct referent for anaphoric one (ex: the red ball), which then

translates to knowing the antecedent string (ex: red ball) and thus the category of the antecedent (N’).

And it can do so without stipulating a priori that N0 is not a possible antecedent. A great strength

of Regier and Gahl’s model is that the preference for the subset when observing only subset data

points does not need to be explicitly instantiated as a constraint on learning. Instead, it falls out

neatly from the mathematical implementation of the Bayesian learning procedure itself—the size

principle of Tenenbaum and Griffiths (2001). This model therefore draws on a domain-general

learning strategy to learn the representations for anaphoric one.

3.2. Using All the Ambiguous Data

Regier and Gahl’s model does harbor an implicit bias about data filters on the learner’s intake,

however. Because Regier and Gahl’s model was designed only to illustrate the utility of ambiguous

data in learning, it made use only of type I ambiguous data, in other words, the data in which the

semantic consequences of the alternative syntactic hypotheses stand in a subset–superset

relation. In this sense, the model artificially restricted the learner’s intake by ignoring the type II

ambiguous data (i.e., the data in which the syntactic consequences of the alternative syntactic

hypotheses stand in a subset–superset relation). These ambiguous data are potentially informative

to a learner trying to determine the syntactic category of the antecedent of one. Regier and

Gahl’s decision to ignore these data was appropriate for illustrating the utility of ambiguous

data. But was it also the right decision for accurately modeling the learning problem? If the

model’s task is to acquire the correct syntactic antecedent, then a truly unbiased learner would

consider not only data that use the semantic consequences of the alternatives as information but

also data that use the syntactic consequences of the alternatives as information.

To understand the importance of the syntactic consequences of the alternative hypotheses,

consider Figure 4, which illustrates the set of strings covered by the two alternatives.

FIGURE 3 Comparison of different ratios of superset to subset

hypotheses.
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Of note, the set of strings included in the N0 hypothesis is a subset of the set of strings

included in the N’ hypothesis. For data points in which the only possible antecedent is a sin-

gle word (e.g., ball), the size principle dictates that the N0 hypothesis be rewarded by an

increase in probability. This then also has the effect of rewarding the semantic consequence

of the N0 hypothesis, that is, not believing the property mentioned in the potential antecedent

(e.g., red) is important. Thus, notice that the effect of the size principle in the syntactic

hypothesis space works directly against the effect of the size principle we just observed in

the semantic hypothesis space, which was the key factor in the success of the model dis-

cussed by Regier and Gahl.

In what follows, we extend Regier and Gahl’s model and construct a Bayesian model that

removes this implicit data intake filter by considering both the semantic and syntactic conse-

quences of alternative syntactic hypotheses. Consequently, our model learns from type II

ambiguous data, in addition to type I ambiguous data and unambiguous data. We can then see if

this “equal opportunity” (EO) model, which gives equal treatment to all data and to all of the

potential consequences of each hypothesis, fares as well when learning anaphoric one from the

available data.

The EO model’s structure reflects the generative process that could lead to each of the

observable data types: unambiguous, type I ambiguous, and type II ambiguous. In this sense,

the model reflects a learning strategy known as “analysis by synthesis”: it learns by simulating

the grammar that produced the data (Halle & Stevens, 1962; Townsend & Bever, 2001). In this

model, all observable data can be generated by having the antecedent of one be either of cate-

gory N0 or N’. In addition, if a given data point is generated by N’ and there are multiple N’s to

choose from, then it could be generated by either the upper N’ constituent (ex: red ball) or the

lower one (ex: ball). This second choice has specific semantic consequences, as mentioned

previously. The learner is thus trying to determine two probabilities: (a) the probability that the

current observable data point was generated by the antecedent of one being category N’ (model

parameter θN), and (b) if there are multiple N’s to choose from, the probability that the current

observable data point was generated by the upper N’ constituent, which corresponds to the

larger N’ string (model parameter θU).

For unambiguous and type I ambiguous data, the syntactic information is the utterance con-

taining anaphoric one and an antecedent that potentially includes a modifier (e.g., “. . . red ball . . .

one . . . ). Unambiguous data indicate that the antecedent is definitely the upper N’ constituent

(e.g., red ball), while type I ambiguous data leave open the options N0 (ball), lower N’ (ball),

FIGURE 4 The set of strings compatible with the syntactic hypotheses

of N0 and N’.
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and upper N’ (red ball). The semantic information is the referent in the world; it is the object

described by the noun in the antecedent (e.g., a BALL). For unambiguous and type I ambiguous

data, the object will be observed to have the property mentioned in the modifier of the antecedent’s

noun (e.g., a RED BALL).

The decision tree in Figure 5 shows how to generate different data types from an utterance in

which the potential antecedent contains a noun and a modifier (“. . . red ball . . . one . . .”). Note

that the model is capable of generating both data types we may observe in the input, corresponding

to unambiguous (7e) and type 1 ambiguous (7b), (7d), (7e), as well as data types we will not

observe, (7a), (7c). We follow each of the branches of the decision tree (left to right) to generate

one of the following data types:

(7) Possible data types for an utterance whose potential antecedent has a modifier

(a) [antecedent = N0, “ball”, object = BALL (non-red)]

(b) [antecedent = N0, “ball”, object = RED BALL]

(c) [antecedent = N’, lower N’, “ball”, object = BALL (non-red)]

(d) [antecedent = N’, lower N’, “ball”, object = RED BALL]

(e) [antecedent = N’, upper N’, “red ball”, object = RED BALL]

We first use θN to decide the category of one’s antecedent. With probability 1-θN, the

category of one’s antecedent is N0. The antecedent then can be only a noun (e.g., ball),

since the strings that are of category N0 consist only of nouns. We then move on to one’s

referent. Suppose c represents the number of potential properties the learner is aware

of (e.g., RED, PURPLE, STRIPED, BIG). The likelihood of choosing an object that, by

coincidence, just happens to have the property mentioned in the potential antecedent

(Mod-Prop OBJECT) when any object could have been chosen is 1/c. The likelihood of

FIGURE 5 A decision tree for generating data whose utterance contains

a potential antecedent with a noun and modifier (e.g., “. . . red ball . . .

one . . .”).
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choosing an object that does not have the property mentioned in the potential antecedent

(Non-Mod-Prop OBJECT) is then 1-1/c. To generate data type (7a), the Non-Mod-Prop

OBJECT is the referent for one; to generate data type (7b), the Mod-Prop OBJECT is the

referent for one.

Going back to the top of the decision tree, the category of one’s antecedent is N’ with

probability θN. There is then a choice between the upper N’ constituent (red ball) and the

lower N’ constituent (ball) as one’s antecedent. We use θU to determine which one is cho-

sen. With probability 1-θU, the lower N’ constituent corresponding to the smaller N’ string

(ball) is chosen. Because the antecedent is simply the noun, 1/c is again the likelihood of

just happening to choose the object with the property mentioned in the antecedent’s modi-

fier (Mod-Prop OBJECT); 1 – 1/c is the likelihood of choosing an object with some other

property (Non-Mod-Prop OBJECT). To generate data type (7c), the Non-Mod-Prop

OBJECT is the referent for one; to generate data type (7d), the Mod-Prop OBJECT is the

referent for one. Returning to the upper/lower constituent decision point, with probability

θU, the upper N’ constituent (red ball) is chosen. The object must then have the property

mentioned in the modifier (red), and so the referent for one will be a Mod-Prop OBJECT,

data type (7e).

For type II ambiguous data, the syntactic information is the utterance containing anaphoric

one and a potential antecedent that has no modifier (e.g., “. . . ball . . . one . . .”). The antecedent’s

category is either N0 or N’. The semantic information is the referent in the world; it is again the

object described by the noun in the antecedent (e.g., BALL).

The decision tree in Figure 6 shows how to generate different data types from an utterance

where the potential antecedent contains no modifier. Both data types generated, (8a) and (8b)

correspond to type II ambiguous data. We follow each of the branches of the decision tree (left

to right) to generate one of the following data types:

(8) Possible data types for an utterance whose potential antecedent has no modifier

(a) [antecedent = N0, “ball”, object = BALL]

(b) [antecedent = N’, “ball”, object = BALL]

We first use θN to decide the category of one’s antecedent. With probability 1-θN, the cate-

gory of one’s antecedent is N0. The antecedent then can only be a noun (e.g., ball), because the

strings that are of category N0 consist only of nouns. The referent must simply be an OBJECT

described by the noun in the antecedent, data type (8a). Returning to the top of the decision tree,

the category of one’s antecedent is N’ with probability θN. Because strings of category N’ can

contain modifiers (e.g., red ball), the probability of choosing only a noun (e.g., ball) is less than

1. More specifically, let n be the number of noun-only strings of category N’ and m be the num-

ber of strings with nouns and modifiers. The likelihood of choosing a noun-only string is

then n/n+m. The referent of the noun-only string must then be an OBJECT described by the

noun, data type (8b).

These generative trees can then be used to create precise update equations that define how a

learner will change beliefs in various hypotheses about anaphoric one (represented by parame-

ters θN and θU) based on the data type actually observed. We note that the equations below shift

probability between hypotheses more gradually than Regier and Gahl’s model did. See Appendix B

for details on how Regier and Gahl’s probability update equations work and why it may be
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248 PEARL AND LIDZ

preferable for a learner to update more gradually. The update equations used for each data type

in the EO model are in (9). See Appendix C for their derivation from the generative decision

trees in Figures 5 and 6.

(9) Update equations for each observable data type

(a) Unambiguous data

(b) Type I ambiguous data

FIGURE 6 A decision tree for generating data whose utterance contains

a potential antecedent without a modifier (e.g., “. . . ball . . . one . . .”).
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(c) Type II ambiguous data

To demonstrate these update equations, suppose the very first data point the learner sees is an

unambiguous data point. Suppose that c = 5 (the learner knows 5 possible properties that could

have been mentioned). Before updating, θN = θU = 0.5. After updating, θN = θU = 0.75. As we

can see, unambiguous data are highly informative, especially if they are encountered early in the

learning period.

Suppose instead that the very first data point the learner sees is a type I ambiguous point.

Suppose that c = 5. Before updating, θN = θU = 0.5. After updating, θN = 0.625 and θU = 0.666.

We can see that type I ambiguous data are not quite as informative as unambiguous data, but are

still quite informative.

Suppose instead that the very first data point the learner sees is a type II ambiguous point.

Suppose that n = 1 and m = 1. The learner knows 1 other possible N’ item besides the noun-only

element (e.g., ball), perhaps the adjective + noun element (e.g., red ball). Before updating, θN =

θU = 0.5. After updating, θN = 0.417 and θU = 0.5. We can see that type II ambiguous data are

potentially quite damaging to θN. Of course, the impact of any data point—unambiguous, type

I ambiguous, or type II ambiguous—will lessen as more data come in, for instance, if the sec-

ond data point the learner in this example encounters is an unambiguous one, θN = 0.611 and

θU = 0.75.

3.3. What Good Learning Would Look Like

In the model, the learner initially sets the parameters θN and θU equal to 0.5. It is thus not biased

toward either of the syntactic category hypotheses (N0 or N’). It is also not biased toward either

of the options when multiple N’s are available (e.g., “. . . red ball . . . one . . .”), the lower N’ or the

upper N’. Again, these options have specific semantic consequences—the lower N’ corresponds

to the more general object (i.e., BALL), while the upper N’ corresponds to the modifier-property

object (i.e., RED BALL). The probability of choosing the preferred adult interpretation, given

an utterance with two potential antecedents, depends on choosing the correct option in each

case. So, if the learner hears, “Jack wants a red ball, and Lily has one for him,” then the interpre-

tation of one is calculated as in (10), using the generative tree in Figure 5.

(10) Interpreting one in “Jack wants a red ball, and Lily has one for him”

(a) Determine if the antecedent of one should be N0 or N’, using θN.

(b) If the antecedent is N0, then the referent is any object described by the noun (e.g., BALL).

(c) If the antecedent is N’, use θU to determine if the upper N’ interpretation (referent is a modi-

fier-property object) or the lower N’ interpretation (referent is any object) should be used.

The probability of choosing the preferred adult interpretation (the larger N’ constituent is

the antecedent of one and the referent has the modifier-property) is the product of the
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probability of choosing the correct category hypothesis (N’) and that of choosing the correct

hypothesis for the semantic interpretation (larger N’ constituent = modifier-property object).

Initially, this probability is 0.500 * 0.500 = 0.250. Given that the end state should be a proba-

bility near 1, a good learning model should steadily increase the probability of choosing the

preferred adult interpretation.

3.4. Simulating an EO Bayesian Learner

Now that we have established how an EO Bayesian Learner learns and what the ideal learning

outcome would be, we can simulate learning over our estimate of the set of data that 18-

month-olds have been exposed to. Each data point is classified as unambiguous, type I ambig-

uous, type II ambiguous, or ungrammatical (noise). The parameters θN and θU are then

updated accordingly.

3.4.1. Syntactic Category

The update equations for θN sometimes require the parameters n and m (type II ambiguous)

or the parameter c (type I ambiguous). As noted previously, n and m correspond to the number

of noun-only strings and noun-and-modifier strings in the N’ set. The N0 set, by definition,

contains only the n noun-only items. The parameter c corresponds to the number of properties the

learner believes a speaker could have chosen to utter. There are several reasonable ways to

estimate what values the learner might assign to these parameters. We outline each of these below.

Type II ambiguous data are more damaging to the N’ category hypothesis the larger the N’

set is compared to the N0 set (see Appendix C for details why). So, as we consider the different

ways to estimate n and m, we will also consider which one generates sets that are closer in size

so as to maximize the performance of the EO Bayesian Learner.

One way to estimate the relative sizes of the sets in the syntactic hypothesis space is to

assume the learner is comparing the elements that could possibly be in the N0 set against those

that could possibly be in the N’ set, given the generative system of language. For example, sup-

pose the child knows that N0 contains only nouns (ball) while N’ contains nouns (ball), adjective

+ nouns (red ball), adjective + adjective + nouns (big red ball), and nouns + prepositional

phrases (ball behind his back). The child might then estimate the relative sizes of these sets by

what elements in the generative system of the language could possibly belong to them (N0 contains

all possible nouns; N’ contains all possible nouns, all possible adjective + noun combinations,

etc.). There are two reasonable ways a learner might do this. First, we could allow a string to

consist of individual vocabulary items (bottle, ball, ball behind his back, etc.) that have been

encountered previously. Alternatively, we could allow a string to consist of individual types

(“Noun”, “Adjective Noun”, etc.) comprised of syntactic categories the child has already

learned.

Data from the MacArthur CDI (Dale & Fenson, 1996) suggest that 14- to 16-month-olds know

on average at least 49 adjectives and at least 247 nouns. Constructing N0 and N’ sets from individ-

ual vocabulary items, a child could posit the N0 set has 247 elements while the N’ set has (at the

very least) 247 + 49*247 elements for the nouns and adjective + noun combinations. Parameter n

would be 247, while m would be 49*247, for a subset-to-superset ratio of 0.020.
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If we construct the N0 and N’ sets from individual types such as “Noun” rather than individual

vocabulary items such as ball, then the N0 set consists only of the type “Noun”. The N’ set contains

“Noun”, and perhaps (at the least) “Adjective Noun”, “Adjective Adjective Noun”, and “Noun

Preposition Phrase”, based on the input the child has encountered. Parameter n would be 1,

while m would be 3, for a subset-to-superset ratio of 0.250. This ratio is considerably larger than

the estimate by individual vocabulary items, and so will cause the type II ambiguous data to

penalize the N’ hypothesis less.

Still, there is another option for estimating the relative set sizes1: the learner uses only the

actual data encountered, rather than all the elements that could be generated by the linguistic

system. More specifically, as input comes in, the learner tracks how often the noun phrases spoken

are simply determiners followed by nouns versus determiners followed by strings involving

modifiers. To estimate this, we examined the Alice files in the Bernstein corpus of the

CHILDES database (MacWhinney, 2000), which are transcriptions of speech to a child at

ages 1;1, 1;3, and 1;5. Given 4,999 words of child-directed speech, there were 465 noun

phrases, 346 of which contained only nouns. This leads to a ratio of 346/465 = 0.744. This

ratio is much higher than the ratios generated by the other options and will cause the type II

ambiguous data to penalize the N’ hypothesis even less. Therefore, to be generous and maxi-

mize the model’s estimate of θN, we choose the third option that makes the set size difference

the smallest.

The update equation for type I ambiguous data requires the variable c, which corresponds to

the number of potential modifiers (or properties) a speaker might use (or refer to). Again, there are

a few ways to estimate this value. The learner may use the set of all possible potential modifiers

the learner knows (e.g., red, pretty, big, behind my back). Alternatively, the learner may use the

set of actual potential modifiers in the environment (e.g., if there is a red ball in environment,

perhaps red, round, bouncy). The more suspicious a coincidence it is that the object indicated just

happens to have the property mentioned in the potential antecedent (e.g., RED if the utterance was

“. . . red ball . . . one . . .”), the more type I ambiguous data rewards the N’ hypothesis (see

Appendix C for details why). So, to maximize θN, we choose the first option mentioned

above, which assumes the superset contains all possible properties the speaker might have

mentioned, given the learner’s vocabulary. As there will always be many more possible mod-

ifiers in the learner’s vocabulary than the actual environment provides, this allows type I ambig-

uous data to reward the suspicious coincidence of a mod-property object the most. Given the

data from the MacArthur CDI (Dale & Fenson, 1996), we estimate that an 18-month-old

learner should be aware of at least 49 properties in the world, and the generous estimate of c is

set to 49.

3.4.2. Lower or Upper N’ (semantic consequences)

The update equations for θU sometimes require the variable c (type I ambiguous). The con-

siderations remain the same for the choice of c as in the previous section. Therefore, a generous

estimate of c that will maximize θU will use the size of the set of possible potential modifiers. As

above, we have roughly estimated this to be 49.

1Many thanks to an anonymous reviewer for pointing this out.
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4. THE EO MODEL’S PERFORMANCE

As we can see in Figure 7, the learning trajectory as a function of the amount of data seen does

not match our ideal learning outcome of a steadily increasing trajectory for the probability of the

correct interpretation of anaphoric one. In fact, as the learner encounters more data, the probability

of the adult interpretation raises only slightly to a final value of 0.260 (1,000 runs, SD = 0.050).

However, as is apparent in Figure 7, this is entirely the fault of θN, the learner’s belief that the

antecedent category is N’ (M final value over 1,000 simulations = .261, SD = 0.050). When the

learner thinks the category is N’, the probability of choosing the upper N’ (θU) is quite high

(M final value over 1,000 simulations = 0.997, SD = 0.000207). Unfortunately, a learner using

these probabilities will be unlikely to converge on the correct interpretation, in which one’s

antecedent is an N’ and, in fact, the upper N’ constituent. As that is the gauge of success, the EO

learner appears lacking.

This failure is especially striking because of how generous we were regarding the data avail-

able to the EO model and how the learner interpreted those data. There were several places in

the construction of the model where we biased the learner toward the correct interpretation

of anaphoric one, concerning the parameters n, m, and c that determine the relative sizes of

the sets in both the syntactic and semantic hypothesis space. As we will demonstrate below,

choosing alternative ways of estimating these set sizes only decreases the EO model’s perfor-

mance further.

The variables n and m concern the size of the N’ set compared to the size of the N0 set. The

greater the difference, the more type II ambiguous data penalizes the N’ hypothesis. We previ-

ously estimated these from the data a learner actually encounters, rather than from the generative

capacity of the linguistic system. However, if we estimate these set sizes using the generative

capacity of the system, we get far greater disparities in set size (cf. section 3.4.1). Using string

types such as “Noun” and “Adjective Noun” leads to a subset-to-superset ratio of 0.25; using

individual vocabulary items leads to a ratio of 0.020.

FIGURE 7 The EO learner’s beliefs as a function of the amount of data

encountered.
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We could also alter the value of c, allowing it to refer only to the potential modifiers in the

learner’s environment at the time of the utterance. The larger c is, the more type I ambiguous

data reward both the N’ category hypothesis and the upper N’ hypothesis, since it is a suspi-

cious coincidence that the property mentioned in the utterance as a modifier just happens to be

the property the referent has, even though the antecedent does not include that modifier. One

could imagine that there are a limited number of potential modifiers in the available environ-

ment at any given time, perhaps five (e.g. red, round, bouncy, next to Mommy, and rubber for

a red, round, bouncy rubber ball that is next to Mommy.) We might allow c to be 5, for

instance.

Table 2 shows the results of the EO model’s performance with these parameters. As we can

see, the probability of converging on the correct interpretation of anaphoric one takes a sharp

decline. At best, the learner converges on the correct interpretation of one with less than a 1 in

20 chance; at the worst, the chance is less than 1 in 250. Note, however, that just as before the

real culprit is the category of one’s antecedent (as determined by θN).

To summarize, even with generous estimates of different variables, the EO model is heavily

biased against the preferred adult interpretation of anaphoric one in an utterance with two potential

antecedents. In fact, the probability of converging on the preferred adult interpretation of

anaphoric one is about 1 in 4 (0.260). Altering values for variables in the model only reduces

this probability further.

We are of course aware that this is the result of only one unconstrained probabilistic

model. However, the important factor in this model’s failure has to do with its sensitivity to

the type II ambiguous data. These data will be lurking in the input no matter what the

probabilistic model used, so any probabilistic model that uses all informative data will be

subject to these datas’ influence. Thus, we believe our result to be generalizable to all prob-

abilistic models that learn from all the available data: unambiguous, type 1 ambiguous, and

type 2 ambiguous.2 Given this, we conclude that unconstrained (and specifically, unfiltered)

Bayesian learning by itself is not sufficient to model human learning or behavior in this

domain.

2It is important to note that this claim is based on realistic estimates of the variables involved. If we alter n and m such

that the ratio is unrealistically high (e.g., above 0.85), then this model can in fact converge on the correct interpretation

(e.g., for a ratio of 0.85, just over 50% of the time). However, we feel that it is reasonable to focus on realistic variables

estimates as we are attempting to explain realistic child learning behavior.

TABLE 2

The EO Model’s Performance With Less Generous Estimates of n, m, and c.

N M Ratio: n/(n+m) c qN qU Correct Interpretation

1 3 0.250 49 0.0489 0.997 0.0487

1 3 0.250 5 0.00917 0.991 0.00909

49 49*247 0.020 49 0.0307 0.997 0.0306

49 49*247 0.020 5 0.00391 0.991 0.00387
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5. ADDING BACK THE CONSTRAINTS ON DATA INTAKE

We began our discussion with the observation that a learning theory can be divided into three

components: the representational format, the filters on data intake, and the learning procedure.

The EO model attempted to solve the problem of anaphoric one using a prespecified representa-

tional format and domain-general learning procedure but no other constraints on the data intake

or learning procedure. In contrast, the model presented by Regier and Gahl, which also used a

prespecified representational format and a domain-general learning procedure, implicitly used a

filter on data intake. That model succeeded. To make sure that the generative model proposed

here is a fair extension of Regier and Gahl’s model, we will examine the result of imposing

filters on data intake. If the generative model is fair, it will succeed when an appropriate data

intake filter is applied. All results reported below use the generous estimates of n = 346, m = 465,

and c = 49.

The filter implicit in Regier and Gahl’s model was to systematically exclude type II

ambiguous data, where the potential antecedent had no modifiers (e.g., . . . ball . . . one . . .).

We dub this model the Ignore–Type-II model. The trajectory of this model is shown in Figure 8,

and shows dramatic improvement. The probability of converging on the adult interpretation is

the product of the probability of the correct syntactic category hypothesis (0.997, 1,000 simu-

lations with SD = 0.000225) and the probability of the correct N’ constituent when there are

multiple options (0.997, 1,000 simulations with SD = 0.000210), which is 0.994. The Ignore–

Type-II learner now has a nearly perfect chance of converging on the preferred adult interpre-

tation of anaphoric one. This change can be attributed to θN, as θU was very near 1 in the EO

model as well.

Another filter we might try is to systematically exclude all ambiguous data, learning

from only unambiguous data (e.g., Fodor, 1998b; Pearl & Weinberg, 2007). Unambiguous

data are maximally informative data and will never lead the learner astray. However, an

FIGURE 8 The trajectories of the filtered learners (Ignore–Type-II and

Ignore–Ambiguous) compared against the EO learner (all data).
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unambiguous data learner will also not benefit from any helpful information in the ambigu-

ous data (particularly the type I ambiguous data), and may face data sparseness problems.

We dub this model the Ignore–Ambiguous model. The trajectory of this model is also

shown in Figure 8 and is far superior to the EO model.3 Notably, however, it is not quite as

good as the Ignore–Type-II learner precisely because it cannot use the helpful information

in the ambiguous data. Still, the Ignore–Ambiguous learner also has a very high chance of

converging on the preferred adult interpretation of anaphoric one. The probability of converging

on the adult interpretation is the product of the probability of the correct syntactic category

hypothesis (0.950, 1,000 simulations with SD = 0.0184) and the probability of the correct N’

constituent when there are multiple options (0.950, 1,000 simulations with SD = 0.0184),

which is 0.903.

To summarize, the EO model shows us that a learner not equipped with filters on data intake

cannot converge on the correct interpretation for anaphoric one. However, if that same genera-

tive model uses a data intake filter that ignores type II ambiguous data, then the model succeeds,

just as Regier and Gahl’s did. This data intake filter is in fact more beneficial than a constraint to

learn only from unambiguous data, as it lessens the data sparseness problem and using type I

ambiguous data is more helpful than ignoring them.

6. ON THE NATURE OF THE NECESSARY CONSTRAINT

We have seen that some kind of data intake filter seems to be required in order for a domain-

general learning algorithm to learn the correct interpretation of anaphoric one. Moreover, a filter to

ignore only type II ambiguous data seems more beneficial than a filter that ignores all ambiguous

data. Given that this filter requires the learner to single out a specific type of potentially informative

data to ignore, and the property of this ignored data involves whether the potential linguistic

antecedent has a modifier, we consider this filter to be specific to language learning. As such, it

seems reasonable to consider it a domain-specific filter. However, while the content of the filter

may be linguistic in nature, it is possible that such a filter can be derived from more general

learning–theoretic concerns.

We now consider the question of where this filter comes from, even given that its content is

domain specific. It seems fairly obvious that the learner cannot (and probably should not) come

equipped with a filter that says “ignore type II ambiguous data” without some procedure for

identifying these data. What we really want to know is whether there is a principled way to

derive this filter. Specifically, we want the filter that ignores type II ambiguous data to be a con-

sequence of some other principled learning strategy. In this way, the necessary domain-specific

filter would become feasible for a learner to implement.

One possibility is that there is a domain-general principle that learning occurs only in cases of

uncertainty, because it is only in cases of uncertainty that information is conveyed (Shannon,

1948; cf. Gallistel, 2001). So, then, we can ask what counts as uncertainty in this domain and,

more specifically, by what measures of uncertainty do type II ambiguous data not introduce

uncertainty.

3The sudden jumps in the trajectory result from the learner actually encountering an unambiguous data point in the

input. The rest of the time, the learner does not learn anything from the input.
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Consider again the syntactic hypotheses: one = N0 and one = N’. In the case of a type II

ambiguous data point such as “Jack wants a ball. Lily has one for him”, the choice between N0

and N’ does not yield an observable difference in the linguistic antecedent string: it is always

ball ([N0 ball] or [N’[N0 ball]]). It also does not yield an observable difference in the semantic

interpretation: the referent is always a BALL. Hence, there is no uncertainty with respect to

either the antecedent for that data point or the interpretation of the sentence relative to the

choice of syntactic antecedent. Consequently, one could treat this kind of example as locally

uninformative. That is, for these examples, there is no information conveyed, and so no reduc-

tion in uncertainty associated with the choice of antecedent. Hence, such sentences should not

contribute to learning.4

It should be noted, however, that at a more global level the type II ambiguous data do have

the capacity to convey information. Because these data involve a choice between N0 and N’, the

effect of that choice can have consequences for the appropriate interpretation of subsequent

examples. The EO model demonstrates that these consequences are pernicious. Thus, if the

learner is driven by a general concern for reducing uncertainty and so learns only in cases of

uncertainty, then the calculation of uncertainty must be done at a local level. More specifically,

for a given data point, if the choice of value for the syntactic category has no consequences for

the item currently being analyzed, then the learner does not use that data point to update the

probabilities of the various hypotheses.

To review, we have posited that the origin of the necessary domain-specific filter for

learning anaphoric one may originate from a learner who uses a domain-general learning

strategy, such as learning only in cases of local uncertainty. The intake will consist only of

the data points for which there is an observable difference in the local interpretation that

results from choosing the syntactic category of one. These data points include the unambig-

uous and type I ambiguous data points only. The syntactocentric learner will not be led

astray by the type II ambiguous data points because they will be locally uninformative and

hence will not function as input to the learning mechanism. Crucially, the linguistic content

of the filter does not need to be built explicitly into the learner’s knowledge because it can

be derived from the principle of learning only from cases in which the choice has a local

consequence. So, in summary, the learner can implement a domain-specific filter (ignore

type II ambiguous data) by using a domain-general learning strategy (learn in cases of local

uncertainty).

7. CONCLUSION

The case of anaphoric one demonstrates the interplay between domain specificity and

domain generality in language learning. What we have seen is that a domain-general learning

procedure can be successful in this case but, crucially, only when paired with domain-

specific filters on data intake. Moreover, we have suggested that the particular domain-

specific filter that yields the best result can plausibly be derived from a domain-general

learning strategy.

4Thanks to an anonymous reviewer for highlighting the relevance of local versus global uncertainty.
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In examining whether a given learning problem requires domain-specific guidance from the

learner, it is important to separate three ways that a learner can exhibit domain-specificity.

Learners may be constrained in the representations of the domain, in the data that they deem

relevant, or in the procedures used for updating their knowledge. Any one of these by itself may

represent a kind of domain-specific constraint on learning, and solutions to learning problems

may be only partially domain-specific, as we have seen in this case study.

The division of the learning theory into distinct components, that can in their own right be

domain-specific or domain-general, is important. The debate about linguistic nativism typically

takes it as an all-or-nothing proposition. Put bluntly, the standard arguments hold either that

language learning is the consequence of general-purpose learning mechanisms or that it is not.

This is a false dichotomy. What we have shown here is that the solution to particular problems in

language acquisition can be more nuanced, drawing on the strengths of both domain-specific

and domain-general learning components.

Finally, we have emphasized the efficacy of data intake filtering on learners. Filtering the

data is, in some sense, a counterintuitive approach to learning because it discards potentially

informative data. Moreover, eliminating data can lead to a data sparseness problem. However, in

order to find the correct generalizations in the data in our case, we found that eliminating some

data was more effective than using it all. The right generalizations are hiding in the data, but

paying attention to all of the data will make them harder to find. Finding them is far easier if the

data considered relevant are restricted to just the right subset.
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A.1. APPENDIX A

The following argument, due to Baker (1979), explains how we know the English element one is

anaphoric to strings that are classified as N’, and not to a simple noun of category N0. Consider

the following examples in which one cannot be anaphoric to a noun:

(A1) a. I met the member of Congress . . .

b. * . . . and you met the one of the Ballroom Dance Team.

c. [NP the [N’ [N0 member] [PP of Congress]]]

(A2) a. I reached the conclusion that syntax is innate . . .

b. * . . . and you reached the one that learning is powerful.

c. [NP the [N’ [N0 conclusion] [CP that syntax is innate]]]

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
O
f
 
M
a
r
y
l
a
n
d
]
 
A
t
:
 
2
1
:
2
1
 
3
0
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



DOMAIN-GENERAL LEARNING AND DOMAIN SPECIFICITY 259

These contrast with the following cases in which one can substitute for what appears to be only

the head noun.

(A3) a. I met the student from Peoria . . .

b. . . . and you met the one from Podunk.

c. [NP the [N’ [N’ [N0 student]] [PP from Peoria]]]

(A4) a. I met the student that Lily invited to the party

b. . . .and you met the one that Jack invited.

c. [NP the [N’ [N’ [N0 student]] [CP that Lily invited to the party]]]

These cases differ with respect to the status of what follows the noun. In (A1) and (A2)

what follows the noun is a complement, but in (A3) and (A4) what follows the noun is a

modifier. We can see that one can take a noun as its antecedent only when that noun does not

take a complement. We represent this by saying that one must take N’ as its antecedent and

that in cases in which there is no complement, the noun by itself is categorized as both N0

and N’. In other words, in cases such as “Jack has a ball, and Lily has one, too”, it must be

the case that ball = N’, as in the structure in Figure 1. If it were not, then we would have no

way to distinguish this case from one in which one cannot substitute for a single word, as in

(A1) and (A2).

A.2. APPENDIX B

The model implemented by Regier and Gahl is quite liberal about shifting probability to the

superset hypothesis: a single unambiguous data point for the superset is enough to shift all the

probability to that hypothesis. However, as we have seen, the correct hypothesis for English

anaphoric one is in the subset in the semantic domain: the learner should prefer the larger N’

constituent, for example, red ball, and thus restrict referents to those that have the mod-property,

for example, the set of RED BALLS. The success of this learner for converging on the correct

semantic hypothesis for anaphoric one relies on the assumption that there will never be unam-

biguous data for the semantic superset (e.g., a member of the non-red BALLS set is the referent

when the utterance is “. . . red ball . . . one . . .”).

It is crucial for Regier and Gahl’s model that this type of data never occur, though it is

entirely possible that the learner might encounter this type of data as noise or in a very specific

pragmatically biased situation (see section 2.2). If the referent of one for the utterance “. . . red

ball . . . one . . .” was a purple ball (perhaps by accident), the new probability for the subset

hypothesis in the semantic domain (the mod-property hypothesis, and so the upper N’ hypothesis)

would be 0. We detail why this occurs below.

Suppose that we refer to the probability that the mod-property hypothesis (equivalent to

the upper N’ hypothesis) is correct as θU. Suppose the learner initially has no bias for either

the mod-property hypothesis or the any-property hypothesis, and so the initial probability of

θU is 0.5 before any data are encountered. This probability will increase as each piece of

ambiguous (subset) data is observed, due to the size principle, which biases the learner to

favor the subset hypothesis (mod-property in the semantic domain) if ambiguous data are

observed.
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260 PEARL AND LIDZ

Let u be a piece of unambiguous data for the superset hypothesis, where the utterance is “. . .

red ball . . . one . . .” and the referent of one is a non-red BALL. The learner now calculates the

updated probability that the mod-property hypothesis is correct, using Bayes’s rule. The updated

θU given the observation of u is represented as the conditional probability p(mod-property| u).

To calculate this probability, we use Bayes’s rule.

(A5) Calculating the conditional probability p(mod-property| u) using Bayes’ rule

The probability p(u|mod-property) is the likelihood of observing the unambiguous

superset data u, given that the mod-property hypothesis is true. In this case, the referent of

one in u specifically does not have the mod-property (RED). Therefore, it could not

possibly be generated if the mod-property hypothesis was true, since the mod-property

hypothesis requires the referent of one to have the property mentioned in the linguistic

antecedent. So, the probability of observing u if the mod-property hypothesis is true

(p(u|mod-prop)) is 0.

We substitute this value into the equation in (A5) to get .

Therefore, the updated probability for θU after seeing a single unambiguous superset data point

u is 0, no matter what the previous probability of θU was.

Because this is not terribly robust behavior for a learner, we have adapted the Bayesian

updating approach described by Manning and Schütze (1999) to generate a more conservative

Bayesian updating approach in the context of a generative model, detailed in section 3 and

Appendix C. Unlike the model implemented in Regier and Gahl, the learner using this more

conservative approach shifts probability more slowly between hypotheses. A single data point

cannot reduce the probability of a hypothesis to 0.

A.3. APPENDIX C

The two parameters to be updated in the model via the input are θN and θU. The update equa-

tions for each use the following equation (Chew, 1971), which assumes parameter θ comes from

a binomial distribution and the beta distribution is used to estimate the prior:

(A6) General form of the update equation for θN and θU

The parameters a and b determine the initial bias in the learner. When a = b, each hypothesis

is initially equiprobable (θ centered at 0.5). When a, b < 1, the learner is biased to move near

one endpoint or the other (0.0 or 1.0) for θ, rather than remain near the center. The variable datax

refers to how many data points the learner has seen that were “successes” for the parameter (N’

data points for θN, upper N’ data points for θU). The totaldatax variable represents the total

p(mod-prop| )  p( |mod-prop)*p( )u u u∝

p(mod-prop| )  0*p( ) = 0u u∝

q a
a b

a bx
x
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number of data points seen that are relevant for this parameter. For θN, all data types (except

ungrammatical data points) are relevant since all must choose between N0 and N’. For θU, only

unambiguous and type I ambiguous data points are relevant, since they give an option for the

lower versus the upper N’, if the N’ category is chosen.

It is reasonable to think of both θN and θU as parameters in binomial distributions, given the

generative trees in Figures 5 and 6. The classic example of a binomial distribution is for a coin,

which has two options: heads or tails. Given the generative trees, two options are available for

both θN and θU. For data generation with θN, either the data were generated by N0 or by N’. For

data generation with θU, either the data were generated by the lower N’ or by the upper N’.

We can adapt the general Bayesian updating equation for each observable data type. Unam-

biguous data have an utterance in which the potential antecedent of one contains a modifier, for

example, “. . . red ball . . . one . . .”. Given the utterance and the environment, the learner knows

that the antecedent must be red ball and that the object referred to is a ball with the property red

(RED BALL).

To update θN, the learner must determine what the new value of dataN is, which represents

the quantity of N’-generated data points seen so far. This will simply be the previous value of

dataN plus the likelihood that the current data point was generated by one having an N’ antecedent.

Using the generative tree in Figure 5 and Bayes’s equation, we can calculate the probability that

the antecedent was N’, given that the antecedent a is known to be red ball and the object o is

known to be a RED BALL. This is shown in (A7). The probability that the antecedent is red ball

and the object is a RED BALL, given that the antecedent is N’, is simply the probability of

choosing the upper N’ constituent, which is θU. The prior probability of N’ is θN. So, the numerator

of (A7) is θU*θN. The denominator is the probability that the antecedent is red ball and the

object is RED BALL. Only one branch of the generative tree in Figure 5 will yield this combination:

the one in which N’ is chosen as the antecedent category and then the upper N’ is chosen. This

probability is θN*θU. The likelihood of N’ having generated this data point is therefore 1. This is

intuitively satisfying, as unambiguous data (by definition) indicate with perfect certainty that N’

is the correct category for one’s antecedent.

(A7) Probability that data point was N’-generated for unambiguous data

Known: antecedent of one = red ball, OBJECT = RED BALL

Value to be added to dataN = p(N’ | a = red ball, o = RED BALL)

 (using Bayes’s equation)

The totaldataN value is incremented by 1, as a single informative data point has been seen for θN.

The θN update equation is thus as follows:

=
p a = red ball, o = RED BALL | N  * p N

p a = red ball, 
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(A8) Update equation for θN, for unambiguous data

To update θU, the learner must determine what the new value of dataU is, which

represents the quantity of upper N’-generated data points seen so far. This will simply be

the previous value of dataU plus the likelihood that the current data point was generated by

one having an upper N’ antecedent. Using the generative tree in Figure 5 and Bayes’s equa-

tion, we can calculate the probability that the antecedent was the upper N’, given that the

antecedent a is known to be red ball and the object o is known to be a RED BALL. This is

shown in (A9). The probability that the antecedent is red ball and the object is a RED BALL, given

that the antecedent is the upper N’, is simply 1. The prior probability of the upper N’ is θU. So, the

numerator of (A9) is 1*θU. The denominator is the probability that the antecedent is red ball and

the object is RED BALL. Only one branch of the generative tree in Figure 5 will yield this combi-

nation: the one in which the upper N’ is chosen as the antecedent category. This probability is

θN*1. The likelihood of the upper N’ having generated this data point is therefore 1. This is again

intuitively satisfying, as unambiguous data (by definition) indicate with perfect certainty that the

upper N’ is the correct N’ for one’s antecedent, with the semantic consequence that the object cho-

sen should have the mod-property.

(A9) Probability that data point was upper N’-generated for unambiguous data

Known: antecedent of one = red ball, OBJECT = RED BALL

Value to be added to dataU = p(Upper N’ | a = red ball, o = RED BALL)

 (using Bayes’s equation)

The totaldataU value is incremented by 1, as a single informative data point has been seen for θU.

The θU update equation is thus as follows:

(A10) Update equation for θU, for unambiguous data

Type I ambiguous data have an utterance in which the potential antecedent of one contains a

modifier, for example, “. . . red ball . . . one . . .”. Given the utterance and the environment, the
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learner knows that the antecedent could be either ball or red ball and that (in the cases we

consider) the object referred to is a ball with the property red (RED BALL).

To update θN, the learner must determine what the new value of dataN is, which represents

the quantity of N’-generated data points seen so far. This will again be the previous value of

dataN plus the likelihood that the current data point was generated by one having an N’

antecedent. Using the generative tree in Figure 5 and Bayes’s equation, we can calculate the

probability that the antecedent was N’, given that the object o is known to be a RED BALL.

This is shown in (A11). The probability that the object is a RED BALL given that the anteced-

ent is N’ is the probability of choosing the upper N’ (θU) plus the probability of choosing the

lower N’ and a RED BALL by chance ((1-θU)*1/c). The prior probability of N’ is θN. So,

the numerator of (A11) is (θU+ (1-θU)*(1/c)) *θN. The denominator is the probability that the

object is RED BALL. Three branches yield this result in the generative tree in Figure 5. The first is

where N’ is chosen and the upper N’ is chosen (θN* θU). The second is where N’ is chosen, the

lower N’ is chosen, and a RED BALL is chosen by chance (θN*(1-θU)*1/c). The third is where N0

is chosen and a RED BALL is chosen by chance (1-θN)*1/c. All three of these possibilities are

summed up into the denominator of the equation in (A11). The value added to dataN will be termed

lN-Type1 (intuitively, the likelihood of the type 1 ambiguous data point being generated by N’). This

value will be less than 1, which is intuitively satisfying, as ambiguous data (by definition) indicate

some uncertainty that N’ is the correct category for one’s antecedent.

(A11) Probability that data point was N’ generated for type I ambiguous data

Known: OBJECT = RED BALL

Value to be added to dataN = p(N’ | o = RED BALL)

 (using Bayes’s equation)

The totaldataN value is incremented by 1, as a single informative data point has been seen for θN.

The θN update equation is thus as follows:

(A12) Update equation for θN, for type I ambiguous data

To update θU, the learner must determine what the new value of dataU is, which represents

the quantity of upper N’-generated data points seen so far. This will again be the previous value
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of dataU plus the likelihood that the current data point was generated by one having an upper N’

antecedent. Using the generative tree in Figure 5 and Bayes’s equation, we can calculate the

probability that the antecedent was the upper N’, given that the object o is known to be a RED

BALL and the antecedent’s category was N’. This is shown in (A13). The probability that the

object is a RED BALL and the antecedent category is N’ given that the antecedent is the upper

N’ (red ball) is 1 *θN. The prior probability of the upper N’ is θU. The denominator is the proba-

bility that the object is RED BALL and the antecedent’s category is N’. Two branches yield this

result in the generative tree in Figure 5. The first is where N’ is chosen and the upper N’ is cho-

sen (θN* θU). The second is where N’ is chosen, the lower N’ is chosen, and a RED BALL is

chosen by chance (θN*(1-θU)*1/c). Both of these possibilities are summed up into the denomi-

nator of the equation in (A13). The value added to dataU will be termed lU-Type1 (intuitively, the

likelihood of the type 1 ambiguous data point being generated by the upper N’). This value will

be less than 1, which is intuitively satisfying as ambiguous data (by definition) indicate some

uncertainty that the upper N’ generated this data point. However, this does reward the suspicious

coincidence of choosing an object that happens to have the property mentioned in the modifier

(red) when the antecedent was really the lower N’ (“ball”).

(A13) Probability that data point was upper N’–generated for type I ambiguous data

Known: object = RED BALL, antecedent category = N’

Value to be added to dataU = p(Upper N’ | o = RED BALL, N’)

 (using Bayes’s equation)

The totaldataU value is incremented by 1, as a single informative data point has been seen for θU.

The θU update equation is thus as follows:

(A14) Update equation for θU, for type I ambiguous data

Type II ambiguous data have an utterance in which the potential antecedent of one

contains only a noun, for example, “. . . ball . . . one . . . ”. Given the utterance and the envi-

ronment, the learner knows that the antecedent must be ball and that the object referred to is

a ball (BALL).

To update θN, the learner must determine what the new value of dataN is, which repre-

sents the quantity of N’-generated data points seen so far. This will again be the previous
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value of dataN plus the likelihood that the current data point was generated by one having

an N’ antecedent. Using the generative tree in Figure 6 and Bayes’s equation, we can calcu-

late the probability that the antecedent was N’, given that the antecedent a is ball and the

object o is known to be a BALL. This is shown in (A15). The probability that the object is a

BALL and the antecedent is ball given that the antecedent category is N’ is the probability

of choosing a noun-only element from the N’ category, which contains a number of noun-

only elements (n) and a number of noun-and-modifier elements (m). This probability is n/

(n+m). The prior probability of N’ is θN. The denominator is the probability that the object

is a BALL and the antecedent is ball. Both branches in Figure 6 yield this result. The first is

when N’ is chosen and a noun-only item is generated (θN* (n/(n+m))). The second is when

N0 is chosen and a noun-only item is generated (1-θN)*(n/n).5 Both of these possibilities are

summed up into the denominator of the equation in (A15). The value added to dataN will be

termed lN-Type2 (intuitively, the likelihood of the type II ambiguous data point being gener-

ated by N’). This value will be less than 1, which is once more intuitively satisfying, as

ambiguous data (by definition) indicate some uncertainty that N’ is the correct category for

one’s antecedent.

(A15) Probability that data point was N’ generated for type II ambiguous data

Known: antecedent = ball, object = BALL

Value to be added to dataN = p(N’ | a = ball, o = BALL)

 (using Bayes’s equation)

The totaldataN value is incremented by 1, as a single informative data point has been seen for

θN. The θN update equation is thus as follows:

(A16) Update equation for θN, for type II ambiguous data

Because type II ambiguous data do not have the choice between multiple N’ antecedents,

these data are not informative for updating θU.

5This is where the Size Principle comes into play. The subset is the N0 category, and so it has a higher likelihood of

having generated the observed data. The ratio of subset to superset determines how much the subset is favored.

=
p(  =  = BALL | N ) * p(N )

p( =  = BALL)

a ball, o

a ball, o

′ ′

= +

+
+ (1 )

=

N 

n

n m
*

n

n m
*

n

n
*

1

N

N

N Type2

q

q q−
−

q a
a b

a bN
N N Type

N
=

data l

totaldata

+ ( + )

+ + ( +1)
, = = 0.5

2−

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
O
f
 
M
a
r
y
l
a
n
d
]
 
A
t
:
 
2
1
:
2
1
 
3
0
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9


