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Abstract: 
Idealizing, a speaker endorses or rejects a (declarative) sentence ! in a situation s based on how 
she understands ! and represents s. But relatively little is known about how speakers represent 
situations. Linguists can construct and test initial models of semantic competence, by supposing 
that sentences have representation-neutral truth conditions, which speakers represent somehow; 
cp. Marr’s (1981) Level One description of a function computed, as opposed to a Level Two 
description of an algorithm that computes outputs given inputs. But this leaves interesting 
questions unsettled. One would like to find cases in which ! can be held fixed, while modifying 
s in ways that have predictable effects on the nonlinguistic cognitive systems recruited to 
evaluate !. Extant work in perceptual psychology offers opportunities for eliciting judgments 
from speakers in highly controlled settings where something is known about the cognitive 
systems that speakers recruit when endorsing or rejecting a target sentence. In such settings, 
behavioral data can reveal aspects of how the human language system interfaces with other 
systems of cognition that are presumably shared with other species. As an illustration, we focus 
on the quantificational word ‘most’ and how perception of numerosity is related to the meaning 
of ‘Most of the dots are blue’, in the hope that studies of other perceptual systems may provide 
analogous opportunities for investigating how words are related to prelinguistic representations. 
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What are lexical meanings? And how are they related to the mental representations that speakers 

use to evaluate declarative sentences for truth/falsity in contexts? We address these questions by 

means of a case study, using experimental methods to reveal how the English word ‘most’ is 

related to perception of numerosity. Much of our discussion is restricted to examples like (1),  

(1)  Most (of the) dots are yellow 

with ‘most’ as a quantificational determiner that combines with a plural noun or a plural partitive 

phrase; see also Hackl (2009). But we’ll end with some speculations about adjectival ‘most’ and 

mass nouns, as in (2-4), and the relevance of our case study to a wider class of constructions.1  

(2)  I have the most dots    

  (3)  Most of the paint is yellow  

(4)  Most of the dot is yellow 

Following Chomsky (1995) and many others, we assume that humans have a faculty that 

generates linguistic expressions that interface with “perceptual-articulatory” and “conceptual-

intentional” systems. Focusing on the latter interface, and stressing understanding as opposed to 

production, expressions can be described as instructions for how to build mental representations 

that exhibit “logical forms.” If one dislikes talk of instructions, one can speak of blueprints for—

or programs whose execution leads to the assembly of—certain representations. Or in honor of 

Frege’s (1879) place in the history of semantics, one might introduce the technical notion 

‘Begriffsplan’, suggesting that the meaning of a generable expression is a “concept-plan” that 

can be paired with a “pronunciation-plan.” But whatever the terminology, our questions here 

concern the structure and constituents of the representations whose assembly is guided by (1). 

                                                 
1 We discuss other joint work that employs methods from the study of vision, suppressing many details reported in: 
Hunter et al. (2009), Pietroski et al. (2009), Lidz, et al. (in press), Halberda et al. (submitted), Odic et al. (submitted). 
And we rely on independently confirmed claims about perception of numerosity, in humans and other animals; for 
reviews, see Feigenson, Dehaene & Spelke (2004), Dehaene (1997), and the appendix to Lidz et al. (in press). 
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In our view, (1) is an instruction for how to build a thought that includes arithmetic 

concepts: #[DOT(X) & YELLOW(X)] > #[DOT(X)] – #[DOT(X) & YELLOW(X)]; the number of yellow 

dots exceeds the result of subtracting that number from the number of dots. Ignoring (2-4) for 

now, we think that ‘most’ accesses a complex quantificational concept: #["(X) & #(X)] > 

#["(X)] – #["(X) & #(X)]; where ‘"’ and ‘#’ correspond to the internal and external 

(restricting/scope) arguments of the determiner. But one might posit other underlying concepts, 

as in: #[DOT(X) & YELLOW(X)] > #[DOT(X) & ~YELLOW(X)], with a symbol for negation and not 

subtraction; #[DOT(X) & YELLOW(X)] > #[DOT(X)]/2, with division (or halving) instead of 

negation; the anumeric thought ONETOONEPLUS[DOT(X) & YELLOW(X), DOT(X) & ~YELLOW(X)], 

according to which some but not all of the yellow dots correspond one to one with all of the 

nonyellow dots. (In general, ONETOONEPLUS["(X), #(X)] iff there are more "s than #s.)  

Hackl (2009) suggests another option involving quantification: the plurality of yellow 

dots outnumbers every other nonoverlapping plurality of dots. And while this kind of proposal 

could be combined with a ‘OneToOnePlus’ gloss of ‘outnumbers’, Hackl assumes cardinality 

comparisons. Or perhaps ‘most’ does not call for any structured representation, and the logical 

form of (1) is simply MOST:DOT(X)[YELLOW(X)], because understanding a word is a matter of 

knowing that it has a certain satisfaction condition that can be specified in many ways. 

In short, there are many ways in which one might understand ‘most’. But experimental 

evidence (Hackl, 2009; Hunter et al., 2009; Pietroski et al., 2009; Lidz, et al., in press; Halberda 

et al., submitted; Odic et al., submitted) confirms (a) the ancient suspicion that a word of the 

“logical” vocabulary can indicate a complex concept, and in our view, (b) the specific proposal 

that ‘most’ invokes concepts of cardinality and subtraction. As discussed below, any version of 

(a) raises questions about how meaning is related to verification, and (b) raises questions about 
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why expressions interface with cognition in this way. Our proposal thus bears on debates 

concerning choices between “extensionally equivalent” semantic theories.3 But the point is not 

merely that experiments can help adjudicate these debates.  

We also want to stress that extant work in perceptual psychology offers opportunities for 

eliciting judgments from speakers in highly controlled settings where something is known about 

the cognitive systems that speakers recruit when endorsing or rejecting a target sentence. In such 

settings, behavioral data can reveal aspects of how the human language system interfaces with 

other systems of cognition that are presumably shared with other species. Idealizing, a speaker 

endorses or rejects a sentence ! in a situation s based on how she understands ! and represents s. 

So one would like to find cases in which experimenters can perform two kinds of manipulations: 

hold ! fixed, while modifying s in ways that have predictable effects on the nonlinguistic 

cognitive systems recruited to respond ‘yes’ or ‘no’; or hold s fixed, while modifying !.  

Our illustration, based on English constructions and perception of numerosity, is offered 

in the hope that studies of other perceptual systems will provide further opportunities to 

investigate how words are related to prelinguistic representations. Linguists can still construct 

and test useful initial models of semantic competence by supposing that sentences have 

representation-neutral truth conditions, which speakers represent somehow; cp. Marr’s (1981) 

Level One descriptions of functions computed, by the visual system and its various subsystems, 

as opposed to Level Two descriptions of algorithms that compute outputs given inputs. But if the 

goal is to study the human language faculty and its relation to other cognitive systems, theorists 

need sources of evidence for more psychologically detailed models of semantic competence. 

                                                 
3 See Quine (1964), Davidson (1974), Foster (1976), Evans (1981), Peacocke (1986), Davies (1987). Hackl (2009) 
focused on ‘most’, in the specific context of applying Generalized Quantifier theory (Mostowski [1957]) to natural 
language semantics; see Barwise and Cooper (1981), Higginbotham and May (1981), Keenan and Stavi (1986). 
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Drawing on what is already known about human visual perception and numerical cognition, we 

offer empirical reasons for moving beyond representation-neutral specifications of truth 

conditions and towards specifying meanings in terms of specific algorithms (cp. Marr’s Level 

Two) for assembling thoughts from available cognitive resources. 

1 ‘Meaning’, Means, Meaning 

Pretheoretic considerations pull the word ‘mean’ in different directions, creating opportunities 

for terminological confusion, especially with regard to how meaning is related to analysis and 

verification. In this section, we make our mentalistic perspective explicit, highlighting the 

empirical issues addressed below. In section two, we defend our specific analysis of ‘most’, 

based on evidence concerning the evaluation procedures that speakers use in controlled contexts. 

The idea is that if (1) is used to assemble a thought of the form #[DOT(X) & YELLOW(X)] > 

#[DOT(X)] – #[DOT(X) & YELLOW(X)], then other things equal, speakers who can do so will 

evaluate (1) for truth/falsity by comparing the number of yellow dots to the result of subtracting 

that number from the number of dots. Evidence that speakers are biased towards this procedure, 

instead of available alternatives that would be as good or better in the contexts at hand, is prima 

facie evidence that (1) is used to assemble the posited thought. But we reject any form of 

verificationism according to which meanings are procedures for using experience to verify 

sentences.4 Our view is not that ‘most’ is analyzable in terms of “sensory” concepts and 

linguistic “conventions”. As discussed below, our claim is simply that data concerning how 

speakers verify sentences like (1) can provide evidence for how speakers understand ‘most’.  

1.1 Meanings: Representations or Representeds? 
                                                 
4 It is hard to see how such a view could accommodate the diversity and composability of word meanings. Likewise, 
we do not say that concepts like #["(X) & #(X)] > #["(X)] – #["(X) & #(X)] are epistemologically privileged, 
compared with concepts like ONETOONEPLUS["(X) & #(X), "(X) & ~#(X)]. For us, the question is how speakers 
understand ‘most’, not how ‘most’ is related to knowledge rooted in experience. 
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On the one hand, it can seem obvious that word meanings are mental representations of some 

kind, and hence that word meanings exhibit representational forms that cognitive scientists can 

try to characterize. Nonsynonymous words can be correlated with the same aspects of reality; 

consider ‘Hesperus’ and ‘Phosphorus’, ‘woodchuck’ and ‘groundhog’. A meaningful expression, 

like ‘Vulcan’ or ‘unicorn’, need not correspond to any aspect of mind-independent reality. And 

polysemy suggests that a word (e.g., ‘book’ or ‘France’) need not correspond to a single aspect 

of reality. But on the other hand, speakers represent the world differently, yet still communicate. 

This might lead one to conclude that meanings are aspects of the environment that diverse 

speakers “triangulate on” when using language to convey information. From this externalist 

perspective, meanings do not exhibit representational forms.  

We follow the former and older tradition of taking meanings to be representations of 

some kind. But we recognize the attractions of the following hypothesis: understanding the 

words of a natural spoken/signed language (i.e., knowing what the expressions mean) just is a 

matter of somehow assigning the right satisfaction conditions to the sounds/signs in question. 

Tarski (1933) showed how to recursively characterize satisfaction conditions for expressions of 

certain invented languages, and then characterize truth conditions for the boundlessly many 

sentences of such a language in terms of satisfaction. Davidson (1967) and Montague (1974) 

later outlined a program of specifying Tarski-style theories of truth for natural languages like 

spoken English. To take a trivial example, perhaps in French, ‘rouge’ is satisfied by an entity e—

or more precisely, for any variable v, ‘rouge(v)’ is satisfied by a sequence of entities that assigns 

e to v—if and only if e is red. And efforts to extend this progam have led to many insights. 

Of course, one wants to know how a natural word comes to have a satisfaction condition, 

and how satisfaction conditions are related to the psychological phenomenon of understanding. 
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But in retrospect, an obvious suggestion is that competent speakers of French represent ‘rouge’ 

as a word satisfied by e iff e is red, and that speakers deploy this “tacit knowledge” in 

understanding expressions like ‘baton rouge’, which is known to be satisfied by e iff e satisfies 

both ‘baton’ and ‘rouge’.5 And one can speculate that speakers represent ‘rouge’ as having a 

certain satisfaction condition without any representation being an aspect of what ‘rouge’ means.  

For each speaker, ‘rouge’ might call a specific concept to mind. But perhaps in part for 

this reason, each speaker understands the word in terms of some concept’s extension, allowing 

for conceptual variation across speakers (and within a speaker) of the same language. Two 

individuals might link ‘rouge’ to different concepts, because one individual is color-blind, yet 

specify the same satisfiers. The concepts might be extensionally equivalent, at least if this kind 

of equivalence is sensitive to patterns of communication and deference. So especially if 

conceptual variation across speakers is the norm, one might think that extensional equivalence—

across all expressions of a natural language—is good enough for sameness of understanding, and 

thus sameness of meaning. And perhaps even with regard to words like ‘most’, mature speakers 

of a language represent shared satisfaction conditions in different ways.  

On this view, shared meanings are represented but representation-neutral. This 

conception of meaning/understanding is often combined with skepticism about appeals to any 

substantive analytic-synthetic distinction or semantic decomposition; see, e.g., Fodor and Lepore 

                                                 
5 Davidson and Montague did not say that competent speakers tacitly know the axioms of a truth theory. At least for 
Davidson, the idea was simply that such knowledge would suffice for understanding; actual speakers may not satisfy 
this sufficient condition. By contrast, many subsequent advocates of truth conditional semantics offered an explicitly 
psychological hypothesis, often in connection with Chomsky’s (1965, 1986) developing conception of grammar and 
the I-language/E-language distinction; see, e.g., Evans (1981), Higginbotham (1985), Peacocke (1986), Davies 
(1987), Larson and Segal (1995), Heim and Kratzer (1998). For skepticism about this psychologized version of the 
Davidson-Montague program, see Chomsky (2000), Pietroski (2005, 2010) and references there. 
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(2002). So the details of how speakers represent satisfaction conditions might seem to be 

semantically irrelevant. But we deny that meaning is representation-neutral in this way. 

1.2  Non-neutrality  

Suppose two speakers use different concepts—say, UNICORN(X) and GRYPHON(X)—to specify the 

satisfiers of a noun that has no satisfiers: one speaker represents the noun as being satisfied by e 

iff e is a unicorn; the other represents the noun as being satisfied by e iff e is a gryphon. Here, 

one suspects different lexical meanings (and in that sense, different words). One can claim that 

such examples should be set aside, as special cases. But this raises questions about whether 

‘groundhog’ and ‘woodchuck’ differ semantically, or if apart from pronunciation, this is just 

another example of speakers representing a common extension in different ways. And in any 

case, if representational format is an aspect of meaning for “fictional vocabulary” items like 

‘gryphon’, it may also be an aspect of meaning for “logical vocabulary” items like ‘most’. 

This would fit with the ancient observation that sentences containing logical vocabulary 

seem to exhibit analytic relations. Suppose there are a hundred marbles in a jar. Competent 

speakers know that (5) implies (6), which implies (7), but not conversely. 

 (5)  All of the marbles are red 

 (6)  Most of the marbles are red 

 (7)  Some of the marbles are red 

This calls for explanation that is not provided simply by representing the logical forms as 

follows: ALL:MARBLES(X)[RED(X)]; MOST:MARBLES(X)[RED(X)]; SOME:MARBLES(X)[RED(X)].  

A speaker who represents the semantic contribution of each determiner with an atomic 

concept may not represent the generalizations: ALL:"(X)[#(X)] $ MOST:"(X)[#(X)]; 

MOST:"(X)[#(X)] $ SOME:"(X)[#(X)]. By analogy, competent speakers may not know that if x 
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heats y, x raises the mean molecular energy of y. Perhaps for logical vocabulary, speakers do 

know various “meaning postulates.” But another hypothesis is that the concepts expressed with 

quantificational determiners share parts. Perhaps (5) and (6) are understood as follows: 

#[MARBLE(X) & ~RED(X)] = 0; #[MARBLE(X) & RED(X)] > #[MARBLE(X) & ~RED(X)]. Or 

alternatively and anumerically: ONETOONE[MARBLE(X), MARBLE & RED(X)]; 

ONETOONEPLUS[MARBLE(X) & RED(X), MARBLE(X) & ~RED(X)]. 

Whatever the format, recognizing implications requires some nonsemantic knowledge 

(cp. Quine 1951), perhaps knowledge concerning cardinalities or correspondence/remainders (cp. 

Barner et al., 2010).  The empirical questions concern the forms of the thoughts indicated with 

(5-7) and the extralinguistic resources required to recognize that these thoughts are not truth-

conditionally independent. And while open-class vocabulary items (nouns, verbs, and 

adjectives/adverbs) typically resist analysis, logical vocabulary items (in particular, quantifiers 

and connectives) often invite analysis. It is notoriously hard to offer even one plausible 

decomposition of CHICKEN(X), which seems not to be a conjunction of ANIMAL(X) with any 

differentiating concept "(X); see, e.g., Fodor (1998, 2003). But with regard to ‘most’, the 

problem is that there are too many candidates—involving cardinality, OneToOnePlus, 

subtraction, negation, etc. In this respect, ‘most’ seems akin to complex expressions like ‘chicken 

egg’, which presumably have a compositional analysis even if the details elude theorists.7  

These considerations have long motivated the study of quantificational expressions as a 

way to perhaps reveal core aspects of how linguistically expressible thought is structured; see 

Ludlow (2005). If (5-7) are understood as sentences that are not truth-conditionally independent, 

                                                 
7 The concept CHICKEN-EGG invites at least three (extensionally similar) analyses: EGG-LAID-BY-A-CHICKEN, 
EGG-FROM-WHICH-A-CHICKEN-CAN-GROW, and EGG-THAT-IS-ALSO-CHICKEN (cp. ‘yellow metal’ and ‘human child’).  
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then for each of these sentences, formally distinct specifications of its truth condition invite 

corresponding proposals about the representational forms that speakers employ. If speakers 

represent the truth conditions in a common way, despite having the concepts required to exhibit 

representational diversity, that undermines motivation for an externalistic representation-neutral 

conception meaning. And if speakers uniformly understand ‘most’ in terms of cardinalities and 

subtraction, perhaps representational details are semantically relevant after all. Studies of 

particular lexical items can thus bear on questions about how meaning is related to cognition. 

In the case of ‘most’, it is also relevant that linguistic understanding and cognitive 

development unfold in parallel. In particular, young children who have not yet attained 

numerical competence can exhibit at least partial understanding of ‘most’. (Barner, Chow & 

Yang, 2009; Barner, Libenson, Cheung & Takasaki, 2009; Halberda, Taing & Lidz 2008; 

Halberda, Hunter, Pietroski & Lidz, submitted; Papafragou & Schwarz, 2005/6). More generally, 

one might wonder how a speaker who cannot count and reliably enumerate things could acquire 

and maintain any concept (or word) whose extension can be specified in terms of cardinalities—

e.g., as #["(X) & #(X)] > #["(X) & ~#(X)]. Some things can outnumber some other things, even 

if the former are “lesser” along many noncardinal dimensions, like area or mass. So in this sense, 

comparing cardinalities requires a capacity to abstract from various perceptible respects in which 

some things are “more” than others.  

Nonetheless, humans and other animals can represent cardinalities in an approximating 

way—without counting—across a wide range of perceptible features often exhibited by 

countable things. This natural capacity is supported by an “Approximate Number System” 

(ANS) that is ratio dependent, in accord with Weber’s Law, with accuracy/discriminability 

declining as number increases. Given a scene with 66 red and 34 blue marbles, it is easy to 
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“sense” that more are red. On the other hand, given 51 red and 49 blue, judgments will be almost 

at chance.8 And speakers might use their ANS to evaluate sentences like (6) for truth/falsity.  

(6)  Most of the marbles are red 

This can still seem to tell against analyzing MOST:"(X)[#(X)] in terms of any concept 

extensionally equivalent to #["(X) & #(X)] > #["(X) & ~#(X)]. One might imagine that instead, 

children use their ANS to acquire a ‘most’-prototype and then an atomic concept that is not 

logically related to other atomic concepts. Note that if ‘most’ accesses an atomic concept—i.e., if 

competent speakers represent the indicated satisfaction condition atomically—there is no 

guarantee that ‘most’ has the “simple majority” satisfaction condition specified in various ways 

above. One can imagine a quantificational word ‘smost’ such that ‘Smost of the marbles are red’ 

means roughly that a supermajority of the marbles are red, with speakers being sure that 51% is 

not enough, unsure about 60%, but sure that 70% is enough. And if ‘most’ is semantically 

atomic, its meaning might well be that of ‘smost’.  

Indeed, one might think that even if a community of numerate adults stipulated a simple 

majority meaning, generations of innumerate children would eventually acquire a word with the 

meaning of ‘smost’. But as discussed in section two, our experiments suggest that ‘most’ is 

understood as a word that makes (6) true so long as the number of red marbles exceeds the 

number of other marbles—no matter how small the difference, even if counting is impossible. 
                                                 
8 For reviews and relevant literature, see Dehaene (1997); Feigenson, Dehaene and Spelke, (2004); Feigenson 
(2007); Cantlon, Platt, and Brannon (2009); the appendix to Lidz. et.al. (in press), and references there. 
Representations of the ANS also seem to be integrated with adult understanding of exact cardinalities, since 
reactions to questions that seem to be about cardinalities or numerals—e.g., ‘Is 67 bigger than 59’—also exhibit 
ratio effects (Moyer & Landauer, 1967). And in numerate cultures, five-year-olds have mapped representations of 
the ANS onto the discrete number words (Le Corre & Carey, 2007). There have also been suggestions that the ANS 
plays some associated role in formal mathematics (Halberda, Mazzocco, & Feigenson, 2008) and math learning 
disabilities (Piazza et al., 2010). Crucially for present purposes, the ANS can generate cardinality estimates for up to 
three perceptual concepts in parallel, for both human adults (Halberda, Sires, & Feigenson, 2006) and infants (Zosh, 
Halberda & Feigenson, 2011). Recording of single neurons in monkeys suggests that the ANS can generate a 
representation of the approximate number of items present within 150 ms of stimulus onset (Nieder & Miller, 2004). 
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Given pragmatics, uttering (6) may still suggest that significantly more than half of the marbles 

are red. But if this is not what (6) means, one wants to know why. We suspect that children 

represent the semantic contribution of ‘most’ by choosing from a limited menu of concepts that 

can be accessed by the human language system to construct thoughts that get evaluated (e.g., for 

truth/falsity) via other cognitive systems. The idea is that given these constraints, the nonatomic 

concept #["(X) & #(X)] > #["(X)] – #["(X) & #(X)] is an especially good choice for ‘most’. 

Obviously, no single experiment or phenomenon will provide decisive evidence in favor 

of any specific hypothesis about representational format. But if animal minds make repeated use 

of certain circuitry that supports computations that are required across many cognitive domains 

(see, e.g., Gallistel, 1989) then one should not be surprised if logical vocabulary in a human 

language accesses such circuitry in a systematic way that gets manifested in many small ways. In 

section two, we focus on studies designed to reveal how adults manage to endorse or reject 

sentences like (6) in contexts where counting is not possible but other strategies are available. 

But many other facts can be relevant.  

For example, Halberda et al. (submitted) report that a nontrivial percentage of children go 

through a phase of understanding ‘most’ as if it meant fewer than half. One can speculate that for 

such children, ‘most’ is semantically atomic: they need to correct a nonlinguistic/nonlogical error 

about when the adult word applies. But this leaves a puzzle: of all the possible errors, why this 

one? Another thought, requiring further study to confirm, is that the nonatomic concept #["(X) & 

#(X)] < #["(X)] – #["(X) & #(X)] is on a child’s menu of options for determiner meanings. 

Perhaps ‘most’ always calls for comparing the cardinality of a conjunction, of a restrictor 

concept "(X) with a scope concept #(X), to a subtraction (of that cardinality from the restrictor’s 
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cardinality).9 Some children might take the comparison to be less than, instead of greater than, 

because this would contrast with the salient competitor ‘more’.  

In other work, we look for evidence that meaning is not representation neutral by 

focusing on respects in which (6) differs from (8), even when all the marbles are blue or red; 

 (8)  More of the marbles are blue than red 

see Halberda et al. (submitted). We mention these various sources of evidence, in part to stress 

that our aim is not to identify meanings with verification procedures. Our proposal is that ‘most’ 

is understood in a certain way, with testable implications for how speakers evaluate sentences. 

And one can reject implausible forms of verificationism without denying (the truism) that logical 

forms often invite certain ways of evaluating whether or not thoughts of that form are true. 

1.3  Logical Form and Verification   

Suppose that one is asked, in a context that makes the question reasonable, whether Al sang and 

Bo danced. In answering, one might execute the following procedure: find out whether or not Al 

sang; find out whether or not Bo danced; if the answer to each sub-question is affirmative, 

answer the posed question affirmatively, and otherwise answer negatively.  

In principle, there are endlessly many other strategies that might be reasonable in 

particular contexts: asking a friend who was at the relevant party (and repeating her answer); 

checking the calendar and answering affirmatively if and only if last night was May 5th (since Al 

and Bo perform only and always on that date); etc. But it seems plausible that other things being 

equal, if a competent speaker of English can evaluate each of two thoughts for truth/falsity, then 

                                                 
9 This ensures that ‘most’ is “conservative” in Barwise and Cooper (1981) sense. That is, DETERMINER:"(X)[#(X)] 
iff DETERMINER:"(X)["(X) & #(X)]; see also Higginbotham and May (1981), along with Keenan and Stavi (1986) 
on defining complex determiners. As children acquire ‘most’, their understanding can be non-adult in various ways; 
see Papafragou and Schwarz (2005/2006), Barner et al. (2009). Though one must consider the possibility that some 
children are simply ignoring a word they do not understand, effectively treating instances of ‘Most "s are #s’ as 
bare plural generics with an existential interpretation perhaps supplemented with stronger pragmatic implication.  
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she will do so if she needs to evaluate their conjunction for truth/falsity. Indeed, one might 

suspect that even if one asks a friend, one uses the friend’s testimony that Al sang and Bo danced 

as evidence that Al sang and as evidence that Bo danced. In which case, one could still be using 

the default evaluation strategy suggested by the logical form of a conjunctive claim: evaluate 

each conjunct, and conjoin the answers. Perhaps there are some cases in which speakers evaluate 

conjunctive claims more holistically, without evaluating the conjuncts. But if so, these are 

plausibly exceptions to the default strategy, perhaps involving metalinguistic judgments.  

More generally, analyses suggest evaluation strategies. This is a mundane point, given 

that speakers can evaluate claims of arbitrary complexity; see Dummett (1973), Horty (2007). 

Sentences of the form ‘P and Q’ indicate logically complex thoughts, whose complexity 

corresponds to a potential procedure for determining whether the thoughts are true or false. 

Likewise, one can decide whether something is a cow that smiled by deciding (i) whether it is a 

cow and (ii) whether it smiled. This is so, because ‘cow that smiled’ indicates a concept that can 

be analyzed as COW(X) & SMILED(X). Prima facie, the default strategy for evaluating (a thought 

assembled via) ‘~P’ is to evaluate ‘P’ and give the opposite answer. Again, there may be special 

cases in which evaluating ‘P’ is hard, and thinkers can employ strategies for evaluating ‘~P’ 

more holistically. But if only because negation often creates difficulties for nonlinguistic 

systems, one suspects that other things equal, ‘Al did not dance’ will be evaluated (if possible) 

by deciding whether or not Al danced.  

Turning from phrasal to lexical decomposition, one can at least imagine a language with 

a morpheme ‘ne’ in which (9) has the following logical form: ~(AL SANG) & ~(BILL DANCED), 

 (9) Al sang ne Bill danced 
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as opposed to (AL SANG) * (BILL DANCED); where ‘*’ stands for an atomic connective such that 

(P) * (Q) iff neither P nor Q . In principle, theorists might discover this fact about (9) in many 

ways. But suppose experimental results suggested that other things equal, speakers evaluate (9) 

by evaluating each clause and conjoining the negations of the evaluations. That would, we claim, 

be prima facie evidence for the corresponding analysis of ‘ne’—as opposed to positing an atomic 

concept with the same truth table. And in our view, the same points apply to ‘most’. If evidence 

suggests that speakers are biased towards evaluating (1) 

 (1)  Most of the dots are yellow 

by comparing (their estimate of) the number of yellow dots to the result of subtracting that 

number from (their estimate of) the number of dots, even when other strategies are available, that 

is prima facie evidence for the corresponding analysis of ‘most’.  

To be sure, it can be hard to know if a certain evaluation procedure (deployed in certain 

contexts) is really a default procedure corresponding to the logical form in question, as opposed 

to a method of confirmation that happens to be favored by certain contexts. But that is a general 

point, which applies equally to any proposed analysis of any expression. One should not assume 

that evidence concerning how speakers evaluate claims cannot confirm proposed analyses. 

Especially if speakers fail to use available evaluation procedures that are favored by the context, 

such evidence can help adjudicate between alternative conceptions of logical form.  

None of this implies or even suggests that meanings are generic procedures for using 

experience to confirm or disconfirm sentences. We readily grant that confirmation can be holistic 

and open-ended in ways that semantic composition is not. We think of meanings as procedures 

for building thoughts, with lexical meanings as atomic procedures for “fetching” concepts that 
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can be combined with others.10 But the structure of an assembled thought can surely make some 

ways of evaluating the thought—gather certain information, by whatever means, and perform 

certain operations if you can—more natural than others. Taking this as a starting point, Lidz et 

al. (in press) urge an “Interface Transparency Thesis:” the verification procedures that speakers 

employ, when evaluating sentences they understand, are biased towards algorithms that directly 

compute the relations and operations encoded by the relevant logical forms. In §2.4, we return to 

and expand on this claim.  

From this perspective, the real issues concern the kind of concept fetched with ‘most’. Is 

this word representationally neutral, in that it can be used to access any concept mathematically 

equivalent to #["(X) & #(X)] > #["(X)] – #["(X) & #(X)]? And if not, is there evidence that 

‘most’ is used to access a concept with which one thinks about cardinalities and subtraction? 

2 Computing ‘Most’ 

In section one, we mentioned various possibilities for the logical form of (1). 

(1)  Most (of the) dots are yellow 

These options can be organized in terms of the atomic concepts posited, thereby suggesting a 

research strategy for gathering evidence for or against specific proposals. 

2.1  Possible Algorithms 

One option is to eschew decomposition and posit an atomic correlate of ‘most’, as in (1a). 

(1a)  MOST:DOT(X)[YELLOW(X)] 

As noted above, this proposal faces its own difficulties, and it has no special status as the null 

hypothesis. Moreover, any evidence that ‘most’ fetches a specific complex concept will be 

                                                 
10 On this view (see Pietroski, 2010), the meaning of ‘loves Juliet’ (or ‘most dots’) can be described as an instruction 
to fetch two concepts from lexical “addresses” and saturate one with the other: SATURATE[FETCH@‘LOVES’, 
FETCH@‘JULIET’]; where executing this mini-program can yield the specific concept LOVES(JULIET).  
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evidence that the concept fetched is not atomic. And while we do not here assume that ‘most’ is 

morphologically complex (e.g., ‘many/much-est’), arguments for such complexity—see e.g., 

Bresnan (1973), Bhatt and Pancheva (2004), Hackl (2009) drawing on Heim (1999)—bolster the 

old suspicion, articulable in terms of Frege’s (1879, 1884) second-order logic, that many 

entailments of (1a) reflect complexity of the logical concept MOST:"(X)[#(X)]. So henceforth, 

we’ll focus on versions of the idea that ‘most’ is not semantically atomic. And in terms of 

organizing hypotheses, one major question is whether ‘most’ is understood in terms of 

cardinalities; where cardinalities can serve as abstract “measures” that group concepts into 

equivalence classes, in terms of how many things fall under them.11  

 Various considerations initially suggest a negative answer. Studies of object-tracking in 

infants (Feigenson & Carey, 2003; Wynn, 1992) have revealed a system that can detect one-to-

one correspondences, at least in certain situations. But as noted above, one might wonder how 

speakers who cannot count could understand ‘most’ in terms of cardinalities. And given how 

cardinality is related to correspondence, truth conditions specified in terms of cardinalities can 

often be specified in anumeric terms. In particular, (1b)  

(1b)  ONETOONEPLUS[DOT(X) & YELLOW(X), DOT(X) & ~YELLOW(X)] 

is true iff some (but not all) of the yellow dots correspond one to one with (all of) the nonyellow 

dots. So like (1), (1b) is true iff each nonyellow dot can be paired with its own yellow dot, 

leaving some yellow dots as “remainders” that are not paired with any nonyellow dot. By 

contrast, (1c) specifies this truth condition in terms of a comparison between numbers. 

(1c)  #[DOT(X) & YELLOW(X)] > #[DOT(X) & ~YELLOW(X)] 

                                                 
11 Restricting attention to concepts that have extensions, the number of a concept is the number of things falling 
under it; see Frege (1884). Deferring discussion of concepts like MUD(X), the number of "(x) is also the cardinality 
of {x: "(x)}. So concepts are numerically equivalent iff their extensions have the same cardinality. 
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 Recall that ‘#’ stands for a mental symbol that combines with a monadic concept to form 

a complex representation of a number (viz., the cardinality of the concept/extension). So one 

might think that for speakers who cannot count, (1b) is a more plausible logical form for (1) than 

(1c); see Pietroski et al. (2009) for discussion. Indeed, one might suspect that speakers who can 

represent numbers are somehow exploiting tacit knowledge of the generalization stated in (10).  

  (10)   #["(X)] = #[#(X)] iff ONETOONE["(X), #(X)] 

This principle lies at the heart of arithmetic.13 And one might think that at least typically, tacit 

knowledge of this principle covaries with being a counter; cp Heck (2000).  

On the other hand, if humans and other animals can estimate cardinalities—by means of 

the ANS system noted above—then (1c) is more plausible. But in any case, there are various 

ways of specifying the numbers to be compared. While (1c) employs negation to specify the dots 

that are not yellow, (1d) employs subtraction and a representation of the number of dots.14 

(1d)  #[DOT(X) & YELLOW(X)] > #[DOT(X)] – #[DOT(X) & YELLOW(X)] 

And of course, there are other ways to avoid a negation operator, as in (1e). 

                                                 
13 The cardinality of concept "(x) is the cardinality of concept #(x)—these concepts are numerically equivalent 
(see note 11)—iff the things falling under "(x) correspond one to one with the things falling under #(x). And this 
generalization, from which the axioms of arithmetic can be derived (in a second-order logic) given Fregean 
definitions of notions like ‘zero’ and ‘predecessor’ (see Heck (1993), Demopolous (1994), Zalta (2003)), can be 
recast in a way that explicitly treats cardinalities as classes of concepts: for every concept "(x), there is a class of 
concepts such that #(x) is the class iff ONETOONE["(X), #(X)]; see Boolos (1998). 
14 In (1d), ‘–’ stands for (a concept of) cardinality subtraction, which differs from set subtraction. For present 
purposes, one could rewrite (1c) as (1c%); 

 (1c%)  |{x:DOT(X)} & {X:YELLOW(X)}| > |{X:DOT(X)} - {X: YELLOW(X)}| 
where the vertical bars indicate a mapping from sets (extensions of concepts) to cardinal numbers, and ‘-’ (like ‘&’) 
indicates a mapping from pairs of sets to sets. In principle, one can ask fine-grained questions about whether 
negation is represented as an operator on concepts themselves or in terms of their extensions and set-subtraction. But 
we won’t, since in our view, the logical form of (1) is more like (1d) than (1c) or (1c%). One can also ask fine-grained 
questions about whether the numbers in question are represented as the numbers of concepts (cp. Frege (1884)), or 
as the cardinalities of sets—as in (1d%) or (1d%%). 

(1d%)  |{X:DOT(X) & YELLOW(X)}| > |{X:DOT(X)}| – |{X:DOT(X) & YELLOW(X)}| 
(1d%%) |{X:DOT(X)| & {X:YELLOW(X)}| > |{X:DOT(X)}| – |{X:DOT(X)| & {X:YELLOW(X)}| 

We set these questions aside; though in our view, they are important. 
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(1e)  #[DOT(X) & YELLOW(X)] > #[DOT(X)]/2 

Hackl (2009) argues against this last analysis, and more generally, against analyzing 

‘most’ as ‘more than half’. Our results confirm his conclusion by providing evidence for a 

logical form specified in terms of cardinality subtraction. We will address Hackl’s own proposal: 

the number of yellow dots exceeds that of every other nonoverlapping set of dots. But initially, 

we focus on (1b), (1c), and (1d). These options illustrate a pair of major divisions with respect to 

algorithms for answering the question posed by (1): algorithms that require representations of 

cardinalities versus those that do not; and within the first class, algorithms that compute one 

cardinality in terms of another (e.g., by subtracting one number from another) versus those that 

do not (e.g., by representing the cardinality of a concept that has a negated constituent). 

 With regard to the first distinction, between (1b) and (1c)/(1d), the point is not that 

comparison of cardinalities will not involve detection of one to one correspondence (and 

remainders) at any level of representation. The point is rather that detection of one to one 

correspondence does not require representation of cardinalities. A thinker can figure out that 

there are more cows than horses in a certain pen by pairing each horse with exactly one cow, and 

noticing that this pairing leaves at least one cow unpaired with any horse. Alternatively, one can 

represent the number of cows and the number of horses, and then compare those representations.  

Of course, one way of comparing cardinal numbers is to represent them in terms of the 

successor function, so that the fourth and third positive natural numbers are represented as 

follows:  0%%%%, 0%%%. Then one can use a OneToOnePlus procedure to determine if the former 

exceeds the latter: keep removing a prime (‘%’) from each representation in turn, starting with the 
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former; answer ‘yes’ iff the primes on the latter representation are exhausted first.15 Nonetheless, 

one can distinguish two kinds of procedures for evaluating the thought that most of the animals 

in the pen are cows: OneToOnePlus procedures that do not involve numeric representations (or 

storage of such representations); and cardinality-comparison procedures that do involve such 

representations and may involve a OneToOnePlus procedure (e.g., at the comparison stage). 

 It might help to think about the second distinction, between (1c) and (1d), in terms of the 

contrast between directly representing the cardinality of the nonyellow dots and computing that 

cardinality without representing the nonyellow dots as such. Imagine two different minds. The 

first can represent the dots that are not yellow, and represent their number (by counting, 

estimating, consulting an oracle, or whatever), just as it can represent the yellow dots and their 

number; but it is unable to subtract, or unable to represent the number of nonyellow dots as the 

result of subtracting the number of yellow dots from the number of dots. The second mind can 

(subtract and) represent the number of nonyellow dots in this computationally complex way; but 

it cannot represent the number of nonyellow dots as such, except in special cases where 

metalinguistic representations and overt counting procedures (or oracles) are deployed.  

 Such distinctions can be viewed as examples of Marr’s (1981) contrast between functions 

computed and algorithms used, even if the issues concern semantic competence and not real-time 

generation of representations in response to stimuli. Theorists can and did initially describe 

semantic competence from a truth-conditional perspective that treats (1b), (1c), and (1d) as 

notational variants. But given any abstract mapping from sounds to truth conditions, one can go 

on to ask how speakers map inputs to outputs in terms of suitably composable representations 

                                                 
15 In any base n, a longer representation indicates a greater number; and for representations of the same length, the 
comparison task can be reduced to comparison of numbers less than n. Indeed, given the generalization in (10), one 
should be unsurprised if cardinality-comparison algorithms exploit one-to-one comparison at some point. 
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that are accessible via lexical items. This shifts perspective, from idealized representation-

independent extensions to idealized programs/instructions for assembling representations of a 

certain sort. Chomsky (1986) likewise contrasts I-languages, procedures that generate 

expressions, with E-languages that can be identified with sets of generable expressions.16 

 We end this subsection with a digression, recognizing that any appeal to cardinality 

concepts raises a foundational question: what do thinkers represent with representations like 

#[DOT(X)]? One can restrict attention to “count concepts,” and say that #[DOT(X)] represents a 

cardinal number. But that leaves the question of what cardinal numbers (zero, one, two, etc.) are. 

And while cognitive scientists need not be metaphysicians, they do need to specify the contents 

of posited representations: what do thinkers represent with #[DOT(X)]? At least since Frege and 

Russell, one answer has been that cardinal numbers—in contrast to noninteger ratios and 

irrational numbers like '—are equivalence classes of extensions, or things that have extensions 

(e.g., mappings from entities to truth values, or idealized representations that are satisfied by 

entities). Such equivalence classes can be ordered, added, and subtracted in obvious ways.17 So 

at least relative to the idealization that count concepts like DOT(X) have extensions, perhaps 

#[DOT(X)] represents an equivalence class of such concepts. 

                                                 
16 Both contrasts, via Marr and Chomsky, are descendants of Church’s (1941) distinction between two 
interpretations for expressions of his lambda calculus: as devices for referring to functions “in extension” (sets of 
input-output pairs); or as devices for referring to functions “in intension” (procedures for computing outputs given 
inputs). Read the former way, (x.x+1 = (x.(3x+27/9)/(5)2), since the same set is described twice; read the latter 
way, (x.x+1 ! (x.(3x+27/9)/(5)2), since the procedures differ. We focus on the construal of ‘(’ according to which 
(".(#.ONETOONEPLUS["(X) & #(X), "(X) & ~#(X)] differs from (".(#.#["(X) & #(X)] > #["(X) & ~#(X)], 
which differs again from (".(#.#["(X) & #(X)] > #["(X)] ) #["(X) & #(X)]. 
 
17 For any equivalence classes C and C%, C > C% iff for any concepts "(x) in C and #(x) in C%, 
ONETOONEPLUS["(X), #(X)]. Correlatively, C + C% is the equivalence class C%% such that: for any concepts "(x) in 
C and #(x) in C% such that ~*x["(x) & #(x)], the disjunctive concept ["(x) v #(x)] is in C%%; where (ideal) concepts 
are productively systematic in ways that ensure that any distinct equivalence classes will contain nonoverlapping 
concepts. Likewise, if C > C%, then C ) C% is the equivalence class C%% such that: for any concepts "(x) in C and #(x) 
in C% such that +x:#(x)["(x)], the conjunctive concept ["(x) & ~#(x)] is in C%%. 
 



 22 

From this perspective, if an animal has (i) a concept DOT(X) with which it can think about 

dots as such, and (ii) a higher-order concept #["(X)] that can be saturated by a concept like 

DOT(X), then the number represented with #[DOT(X)] is the equivalence class C such that for any 

concept "(X): "(X) is in C iff ONETOONE["(X), DOT(X)]. Putting the point in an explicitly 

Fregean way, representations of numbers (as objects) are derivative on higher-order 

representations akin to FOUR["(X)], which can be saturated by a concept like DOT(X) to yield a 

truth-evaluable thought.18 We’ll return to some related issues in section three. But having flagged 

the foundational question, and noted that answers need not be mysterious, we henceforth assume 

that cognitive scientists may legitimately appeal to representations of numbers. 

2.2  Against OneToOnePlus 

To provide evidence against hypothesis (1b), and in favor of an alternative like (1c) or (1d), 

(1b)  ONETOONEPLUS[DOT(X) & YELLOW(X), DOT(X) & ~YELLOW(X)]  

(1c)  #[DOT(X) & YELLOW(X)] > #[DOT(X) & ~YELLOW(X)] 

   (1d)  #[DOT(X) & YELLOW(X)] > #[DOT(X)] – #[DOT(X) & YELLOW(X)] 

one wants an experimental context with several features. First, speakers should be able to 

evaluate (1) in ways significantly better than guessing in the context.  

  (1)  Most of the dots are yellow 

Second, the stimuli in the context should vary with regard to ease of using a OneToOnePlus 

algorithm that can be used successfully in the experimental task, at least in the easy cases. Third, 

                                                 
18 The higher-order concept FOUR["(X)] clearly determines an equivalence class of concepts—viz., those that 
apply to four things. But the plural/nondistributive concept FOUR(X), which applies to some things iff they are four, 
is also of interest. Given some objects identified with first four cardinal numbers—e.g., ,, {,}, {{,}}, and 
{{{,}}}—they are four. And if "(X) is a concept that applies to each of these four special entities and no others, 
then for any other concept #(X): FOUR[#(X)] iff ONETOONE["(X), #(X)]; and FOUR[#(X)] iff some things that 
collectively fall under FOUR(X) are such that they are all and only the things that fall (distributively) under #(X), 
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presentation times should be long enough to engage speakers’ default mechanisms of evaluation, 

but brief enough to discourage use of other strategies.  

When display times are long, speakers can use top-down strategies that sometimes 

improve and sometimes degrade performance. For example, when given 800 milliseconds to 

estimate the number of dots on a screen, people make less accurate estimates for higher numbers 

(e.g, 30) compared with estimates made in 200 milliseconds; see Mandler & Shebo (1982). 

Attempts to engage in explicit chunking and counting are evidently more bias-prone than 

estimating via the ANS. And for addressing our initial questions, display times of 200 

milliseconds are appropriate. This interval is long enough to engage the ANS (see note 8), and 

long enough for the use of OneToOnePlus operations; see the control experiments, noted below, 

in Pietroski et al. (2009). Yet it is brief enough to preclude counting and various other strategies; 

see note 8. One can speculate that speakers’ default verification strategy takes longer to execute, 

because it requires other operations. But our initial questions concern (1b), (1c), and (1d). 

To assess whether speakers use the ANS to approximate cardinalities in evaluating (1), 

given a display, the stimuli should vary with regard to the ratio of yellow to nonyellow dots—

controlling for area and other factors—since performance driven by the ANS is ratio dependent, 

in accord with Weber’s Law. Given independent results from other labs (see Dehaene 2007), 

there are testable predictions of how performance driven by the ANS should degrade as the ratio 

of yellow to nonyellow dots approaches unity.  

 Our method was to present native speakers of English with displays like those below for 

200 ms.  

[ FIGURE 1 HERE ] 
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These particular scenes include ten yellow dots and eight blue dots, making the target sentence 

true. In the first scene, the dots are scattered randomly. The others were generated so that each 

blue dot would seem to be paired with a yellow dot, leaving two yellow dots not paired with any 

blue dot. In the second scene, eight yellow-blue pairs are scattered, leaving two yellow dots 

“alone.” In the third, each row contains dots of each color. In the fourth, the color in each column 

is uniform, with the extra yellow dots also suggesting a longer yellow line. Participants in the 

experiment were presented with many such displays, with varying ratios, counterbalancing for (i) 

whether there were more yellow dots or more blue dots, and (ii) whether or not the greater 

number of dots corresponded to the greater number of pixels.  

Performance was unaffected by these variations.19 For the first three trial types—

Scattered Random, Scattered Pairs, and Mixed Columns—performance was as predicted by the 

ANS model. Indeed, the fit to the psychophysical model was quite tight (with R2 values greater 

than .85), as shown in figure 2 and table 1. Participants were clearly using the ANS to answer the 

question. There was no effect of the contrast between Scattered Random trials and the other two 

trial types. Nor was their any evidence that participants used a OneToOnePlus algorithm, even in 

an error prone way; see Pietroski et al. (2009) and Lidz et al. (in press) for extended discussion 

of the method and data analysis.  

FIGURE 2 and TABLE 1 HERE] 

One might worry that any participants disposed to use a OneToOnePlus algorithm would 

be unable to do so in 200 ms, and that use of the ANS was simply a strategy they resorted to 

given the time constraints. But separate studies, reported in Pietroski et al. (2009), showed that 

                                                 
19 On size-controlled and area-controlled trials, individual dot sizes were randomly varied by up to 35% of the set 
average. This discouraged the use of individual dot size as a proxy for number. 
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200 ms is enough time to detect and report the color of “loner” dots like the two yellow outliers 

in the Scattered Pairs scene above. Indeed, the new participants were better at this task—

showing improved ratio discriminability—compared with the original group’s performance on 

the same Scattered Pairs trials, when the task was to evaluate (1). So at least for these trials, 

using a OneToOnePlus algorithm would have led to good performance. And to repeat, 

performance in the initial experiment fit the ANS model tightly, with no symptoms of 

deterioration for the Scattered Random (non-pair-off) scenes. Participants apparently used the 

same cardinality-estimation strategy, across the first three trial types, even though they could 

have used a OneToOnePlus strategy and done quite well on at least many trials.20 

The fourth trial type, “Sorted Columns,” was interesting because participants clearly used 

a different and very effective strategy. Performance was nearly at ceiling, without effect of ratio. 

Further work is needed to know what participants were doing in these trials; perhaps they 

quickly became sensitive to a correlation between “perceived line length” and the truth of (1). 

But the important point here is that participants were not locked into a single strategy across all 

trial types. An alternative strategy can become salient and preferred to a default strategy in 

certain contexts. As stressed above, our view is not that the logical form of (1) forces speakers to 

base their responses on estimations and comparison of cardinalities, even in situations where 

some other perceptually salient aspect of the situation provides an easier way of answering the 

question. We offer no proposal about why Sorted Columns triggered use of an alternative 

                                                 
20 One can speculate that participants were unable to use a OneToOnePlus strategy on Scattered Random scenes, 
and that this led them to adopt an ANS-based strategy even for Scattered Pairs and Mixed Columns scenes. But this 
begs the question: if ‘most’ is understood in correspondence terms, why didn’t participants adopt a correspondence 
strategy, with a result of increased accuracy for pair-off cases and decreased accuracy for other cases? We see no 
reason for thinking that our stimuli would have led participants who understand ‘most’ in terms of correspondence 
to abandon a correspondence strategy. 
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strategy, while Scattered Pairs did not trigger use of an available alternative strategy. But the fact 

that participants could and did shift strategies, at least for some cases, helps bolster the point that 

their default strategy was not OneToOnePlus. It seems that a special feature of Sorted Columns 

scenes drove participants off using an ANS strategy, not off using a OneToOnePlus strategy.  

This makes it especially striking, in our view, that performance on Mixed Columns and 

Scattered Pairs fit the ANS model so well. For whatever ‘most’ means, participants were clearly 

able to use their ANS system to evaluate (1) across a range of scenes. This is intriguing, though 

not inexplicable, if ‘most’ is understood in terms of cardinality comparison. For as noted above, 

independent evidence suggests that the ANS somehow interfaces with representations of 

cardinalities. But if (1) is understood in terms of one-to-one correspondence, it is hard to see how 

information provided by the ANS could be of use in evaluating (1). For the ANS does not 

generate a representation of unity, or any representation of a “minimal” difference between 

distinct cardinalities; cp. Leslie, Gallistel, and Gelman (2008). One can hypothesize that adult 

counters tacitly know (11), 

 (11)   #["(X)] > #[#(X)] iff ONETOONEPLUS["(X), #(X)] 

and that participants use their ANS to evaluate the left side of (11). But if participants represent 

the question posed by (1) in terms of correspondence and remainders, why do they resort to the 

ANS—as opposed to perception of correspondence and remainders—in evaluating (1)?  

2.3  ‘Most’ is not ‘smost’  

In considering the possibility that ‘most’/MOST["(X), #(X)] is semantically/conceptually atomic 

(see section 1.2), we said that if this so, one might expect (1)  

(1)  Most of the dots are yellow 
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to be understood as implying that the number of yellow dots is significantly greater than the 

number of nonyellow dots. And in any case, one might find this claim about (1) plausible.  

On this view, the meaning of ‘most’ is more demanding than we have been suggesting. 

And this predicts that willingness to endorse (1) will decrease in a way that differs from our 

model, as the ratio of yellow to nonyellow dots decreases towards unity. If participants 

understand (1) in the more demanding fashion, their responses should indicate indifference (50% 

affirmative) at some ratio significantly above unity. Or put another way, across cases where the 

ANS is used to estimate and compare cardinalities, the observed performance curve should 

degrade towards some point on the x-axis significantly to the right of the origin. In cases where 

another system with better discriminablity is used, there should be even clearer evidence of 

degradation towards indifference at some ratio greater than unity. But in fact, two aspects of our 

data revealed that participants did not behave as if they understood (1) as a demanding claim 

according to which one extra yellow dot might not suffice to make (1) true.  

First, in Sorted Columns trials, 10 yellows vs. 9 blues was judged to be an instance of 

most dots being yellow, in 94% of such cases. Second, on the other trial types, performance 

accorded with a psychophysical model for the assumption that a single extra yellow dot suffices 

for the truth of (1). Graphically, this can be seen in the fitted curves of Figure 2: these curves do 

not cross the x-axis, indicating chance performance on the ‘most’-not-‘smost’ question, until the 

ratio approximates unity. This model predicts that participants will tend to answer the test 

question affirmatively—though the tendency may be slight—for any positively signed difference 

between the yellow and nonyellow dots. So the best fit model of participants’ performance 

predicts that any situation with at least one more yellow than nonyellow dot is a situation in 

which (1) counts as true.  
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Relatedly, as noted above, if participants understood ‘most’ as implying significantly 

more (as opposed to at least one more), their accuracy should have systematically deviated from 

our model as the ratio of yellow to nonyellow dots decreased. The model should have become 

less accurate if participants understood ‘most’ in the more demanding way. To test for such 

deviation, we calculated participant means for percent correct for each ratio bin across the three 

trial types (Scattered Random, Scattered Pairs, and Column Pairs Mixed). The signed deviations 

of these means from the psychophysics model are plotted below. 

[FIGURE 3 HERE] 

Differences between percent correct and the psychophysics model were centered on zero 

with no tendency for these deviations to increase as Ratio moved closer to 1. This means that 

participants behaved in accord with the psychophysics model, according to which one extra yellow 

dot suffices (up to the stochastic limits of the ANS to detect this difference) for judging that most 

dots are yellow.21 

2.4 Subtraction Trumps Negation 

The logic of the main experiment discussed above was simple. In a controlled setting where a 

certain procedure P could be used to answer a question posed with a sentence !, and P reflects an 

initially attractive hypothesis about the logical form of !, let the stimuli vary in a way that would 

make P easier or harder to employ. If success does not vary accordingly, but rather varies in a 

way predicted if participants used an alternative procedure P%, this tells against the hypothesis 

that the logical form of ! makes P rather than P% the default verification procedure for !. And if 
                                                 
21 Several colleagues and referees have suggested that while ‘most’ has the more demanding (significantly greater) 
meaning, some situations—e.g., votes, predictions, obligations, and displays of colored dots—lead speakers to assume 
that a difference of one is significant. It is hard to assess this suggestion, absent an independent characterization of 
when a minimal difference is significant. But if ‘most’ has the more demanding meaning, one wonders why the 
increased demand is so easily nullified, as if the appearance of increased demand was due to pragmatic factors. 
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P% is an independently plausible candidate for the default verification procedure—i.e., if P% also 

reflects a plausible hypothesis about the logical form of !, and the information that P% calls for 

can be provided by known cognitive systems—this is some evidence that ! has the logical form 

corresponding to P%, at least as opposed to P. 

 Lidz et al. (in press) encapsulate this line of thought as the “Interface Transparency 

Thesis” (ITT): 

the verification procedures employed in understanding a declarative sentence are 

biased towards algorithms that directly compute the relations and operations 

expressed by the semantic representation of that sentence. 

If one focuses on the language faculty, thinking about other systems interfacing with it, ITT is 

another way of expressing a relatively modest point we stressed at the end of section one: the 

structure of an assembled thought makes some ways of evaluating the thought—gather certain 

information, by whatever means, and perform certain operations if you can—more natural than 

others. If one focuses on other systems, thinking about the language faculty interfacing with 

them, ITT reflects another (old) idea: while logical forms surely reflect linguistic constraints, 

they also reflect the kinds of representations and computations that humans can employ 

independent of special linguistic capacities.  

Expression meanings allow for the construction of thoughts that can be evaluated via 

extralinguistic cognitive systems that are subject to their own constraints. Each such thought, T, 

must exhibit a format that is recognizable by (i) other systems, like the ANS, that can themselves 

provide the information required to evaluate the thought, or (ii) mediating systems—cognitive 

middlemen—that can construct a thought T* that is truth conditionally equivalent to T, at least in 

the context at hand, and evaluate T* via (i). Some appeal to middlemen is unavoidable given that 
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confirmation is holistic. For example, given scenes with Sorted Columns, speakers can evaluate 

‘Most of the dots are yellow’ without estimating and comparing cardinalities. 

One would like to know what speakers notice about such scenes, how they notice it, and 

how they exploit such scene-specific knowledge. But such questions are reminiscent of the frame 

problem. More generally, appeal to middlemen encodes the mystery of how complex concepts 

are used in complex situations. So while such appeal is unavoidable, in accounts of the many 

ways that sentences can be evaluated for truth/falsity, such appeal is not to be welcomed in 

accounts of linguistic meaning that purport to describe theoretically tractable aspects of how the 

human language faculty interacts with other (relatively simple) computational systems. One can 

adopt the hypothesis—contrary to ITT—that every case of evaluation is a holistic enterprise, and 

that there are no default verification strategies. But this strong claim does not follow from the 

more mundane point that everything one knows is potentially relevant to (dis)confirmation.   

Furthermore, any “translation” from one truth-specification to another requires an initial 

specification: no transformations without inputs. And to learn that one truth-specification is 

equivalent to another, at least in certain contexts, one needs to compare outputs of some ancillary 

system—e.g., a line-length detector—with evaluations based on the initial specification. To learn  

that line length is a good proxy for cardinality, in certain contexts, one needs some independent 

assessments of how many things are in the lines.  So while middlemen (and learning which 

procedures are equivalent in which contexts) will be interesting parts of the final story 

concerning how language and extralinguistic cognition interact, these interesting processes 

require more basic semantic specifications that provide initial/default verification procedures. 

As a methodological point, ITT says that middlemen are not options of first resort, and 

that hypotheses about logical forms should reflect this. As a thesis about cognitive architecture, 
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ITT says that middlemen are valuable additions to a mind that could operate (less intelligently) 

without them. Recapitulating earlier points, our suggestion is not that meanings are verification 

procedures, but rather that meanings are instructions to build thoughts whose logical forms can 

be used as default verification procedures—so long as one abandons the idea that such 

procedures need to be specified in terms of experience, as opposed to abstract notions like 

numbers and subtraction. With this in mind, let’s return to the choice between (12) and (13), 

 (12)  #["(X) & #(X)] > #["(X) & ~#(X)] 

   (13)  #["(X) & #(X)] > #["(X)] – #["(X) & #(X)] 

as the logical forms for (14), our target sentence for the next experiment. 

  (14)  Most of the dots are blue 

Ideally, one would like to let scenes vary in terms of how easy it is to “select” the 

nonblue dots, while also letting scenes vary (orthogonally) in terms of the ratio of blue to 

nonblue dots. And independent studies have revealed that given a display of suitably differing 

objects—e.g., dots of different colors, or lines that exhibit different orientations—the objects that 

share a given visual feature (e.g., being blue) can be selected and attended to, making it possible 

to estimate the number of such objects (Halberda, Sires & Feigenson, 2006; Nagy & Thomas, 

2003; Wolfe, 1998). Unsurprisingly, the ANS cannot generate an estimate of the nonblue dots as 

such. Nor can disjunctive categories, like blue or red, serve as a basis for selection; see Treisman 

and Gormican (1988), Treisman & Souther (1985). But the ANS will generate, in parallel, 

estimates of the total number of displayed objects and two or sometimes three subsets, so long as 

each subset corresponds to a distinctive perceptual feature; see Halberda et al. (2006).  

Given a simple two-color display, like figure 4a, one could well notice that the nonblue 

dots are the red ones. In a three-color display, one might notice that the nonblues are the reds 
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plus the purples. So one can imagine a middleman using information provided by the ANS to 

determine the number of nonblues, perhaps via addition in a three-color trial.  

[FIGURE 4 HERE] 

But any such hypothesis predicts that performance should deteriorate, holding ratio fixed, 

especially as the number of colors rises beyond one’s capacity to independently sample each.  

With five colors, any strategy that relies on estimating numerosities for each color should 

fail, at least if displays are presented only just long enough for selection and ANS estimation. 

Independent results demonstrate that human adults can only represent (on average) three to four 

color sets from a brief display (Halberda et al., 2006). So we presented displays like those in 

figures 4a-4d for only 150 ms. If the number of nonblue dots is computed by subtracting the 

number of blue dots from the total number of dots, performance should be unaffected by the 

number of colors other than blue: performance on two-color and five-color cases should be about 

the same. Moreover, work from other labs provides independently confirmed models of the 

effect of subtraction, making it possible to predict how accuracy should decline (as the ratio of 

blues to nonblues approaches unity) if the number of nonblue dots is computed by subtraction 

based on two other cardinality estimates; see Dehaene (2007).  

The studies reported in Lidz et al. (in press) yielded data that fit this latter model, 

suggesting that (13) reflects the default evaluation procedure used. As shown in Figure 5 and 

Table 2, performance fit the ANS-with-subtraction model quite well (with R2 around .95 or 

higher). There was no discernible effect of the number of colors. Across trial types, participants 

performed as if they used the ANS to (i) estimate the number of yellow dots directly, and (ii) 

estimate the number of other dots by estimating the total number of dots and subtracting the 

estimate for the yellow dots. Failure to use an alternative strategy in four/five-color cases is 
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perhaps not surprising. But any success at all in these cases, at 150 ms, calls for comment. If (13) 

does not reflect a default strategy for evaluating (14), one needs to explain how and why 

participants hit on this effective strategy. More importantly, though, the data suggest that 

participants didn’t resort to an alternative strategy in two/three-color cases. (And recall, from 

experiment one, that participants are able to use an alternative strategy for certain trial types.) 

[FIGURE 5 and TABLE 2 HERE] 

If the task was to evaluate a thought of form (12)—or if MOST["(X), #(X)] was atomic— 

  (12)  #["(X) & #(X)] > #["(X) & ~#(X)] 

one might expect participants to adopt a simple strategy for two-color trials: the ANS delivers an 

estimate for each color; so just compare the two estimates. This would yield better results than 

estimating the total number of dots and subtracting. For even if subtraction adds no noise, the 

total number of dots will be larger—triggering a noisier estimate—than those of any one color. 

But performance on two-color trials fit the ANS-with-subtraction model, as predicted by ITT 

given the logical form (13).  

  (13)  #["(X) & #(X)] > #["(X)] – #["(X) & #(X)] 

And while (13) might seem more complex than (12), if one focuses solely on the language 

faculty, (13) is arguably the more natural form of thought if one focuses on the perceptual 

systems that regularly provide the information used to evaluate sentences. 

In this context, it is also worth comparing (13) with Hackl’s quantificational 

characterization of ‘most’ as ‘many-est’. On his view, ignoring details not relevant here, (14) 

 (14)  Most of the dots are blue 

has the following meaning: the dots are such that the number of blue ones exceeds the number of 

any other nonoverlapping subset. This condition is met if and only if the focus set (i.e., the set of 
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blues) outnumbers its complement (i.e., the set of nonblues), given the restricted domain in 

question (i.e., the dots). But on Hackl’s view, this is because ‘most’ invokes quantification over 

all nonoverlapping alternatives to the focus set, its complement set included. By contrast, (13) 

makes do with reference to the restricted domain and focus set, using the latter’s cardinality 

twice. Correlatively, #[DOT(X) & BLUE(X)] > #[DOT(X)] – #[DOT(X) & BLUE(X)] can be evaluated 

in the same way, regardless of how many colors appear in the display.  

If (14) was a quantificational claim regarding every subset of the dots that does not 

overlap with the blues, then other things equal, one would expect the difficulty of evaluating (14) 

to rise as the number of colors rises. But this consideration is not decisive, even if one embraces 

interface transparency and our data, since it is unclear which default verification procedure is 

implied by Hackl’s proposed semantics. It seems unlikely that any natural mind would or could 

compare the blue dots with every (or every salient) nonoverlapping subset of the dots. If one can 

judge whether the blues outnumber the reds, why bother comparing the blues to the large reds 

(the reds on the left, the reds near a green, etc.)? And if one had to compare the blues with each 

nonoverlapping set of dots, then as the number of dots rose (holding the ratio of blues to 

nonblues constant) the number of required comparisons would explode with just a few colors.  

Likewise, if one could judge whether the blues outnumber the nonblues, why bother 

comparing the blues with the reds? But as noted above, the nonblues might not be selectable as 

such. So one might think that Hackl’s semantics suggests the following default verification 

procedure: compare the number of blue dots to the sum of the cardinalities of each salient subset 

of the dots that does not overlap with the blues, inferring that this sum is at least as large as any 

addend. So long as the salient subclasses exhaust the nonblue dots, this procedure will work. But 

again, the difficulty of execution (and error rate) would presumably rise as the number of salient 
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subclasses rises, especially if those subclasses overlap. So given our data, one might hope to 

connect Hackl’s proposed semantics with the verification procedure we suggest, treating the 

latter as a kind of cognitive middleman: compare the number of blue dots to the difference 

between that number and the total number of dots, inferring that this difference is at least as large 

as the cardinality of any subclass of the dots that does not overlap with the blues.  

We prefer to retain interface transparency, instead of adopting a semantics that always 

requires this kind of inference for verification. But Hackl motivates his semantics in part by 

arguing that the quantificational analysis—bound up with the analysis of ‘most’ as ‘many-est’—

is attractive for reasons orthogonal to those discussed here; and we cannot assess these other 

arguments here. Hackl also offers evidence that in some situations, speakers asked to evaluate 

sentences with ‘most’ do perform some of the comparisons that his semantics invites. Though in 

our view, such evidence is not probative if the questions concern which verification procedures 

are the defaults. We take it as given that speakers use various strategies in various situations. For 

us, the question is whether available procedures are neglected—in circumstances where they 

could be used to good effect—in favor of a strategy that reflects a candidate logical form for the 

sentence being evaluated. If so, that is evidence in favor of the candidate in question. 

3 Extensions 

Until now, we have restricted attention to sentences in which ‘most’ appears as a quantificational 

determiner that combines with a plural internal argument—like ‘dots’, ‘dots in France’, or ‘of the 

dots’—to form a determiner phrase that combines with a plural argument (like ‘are yellow’).22 

But we want to end with some remarks about (2-4), 

                                                 
22 And note that ‘most of the dots’ (unlike, say, ‘every dot’) can sensibly combine with intuitively nondistributive 
predicates like ‘surrounded the square’, ‘rained down on the square’, and ‘clustered inside the square’; cp. Boolos 
(1998), Schein (1993).  
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(2)  I have the most dots 

  (3)  Most of the paint is yellow  

(4)  Most of the dot is yellow 

in the context of general questions about how lexical items can be so flexible, while still 

respecting substantive compositionality constraints.  

3.1  Quantificational Flexibility 

If (1) has the logical form shown in (1d),  

  (1)  Most of the dots are yellow 

(1d)  #[DOT(X) & YELLOW(X)] > #[DOT(X)] – #[DOT(X) & YELLOW(X)] 

it is tempting to conclude that ‘most’ itself has the following logical form: #["(X) & #(X)] > 

#["(X)] – #["(X) & #(X)]. But (2) does not mean that the number of dots the speaker has 

exceeds the result of subtracting that number from the number of dots. Sentence (2), in which 

‘most’ appears as an adjective, can be true if the speaker has a plurality (but not a majority) of 

the dots—i.e., more dots than any other player. And in Hindi, along with various Romance 

languages, this meaning is expressed with a word like ‘most’ that does not also appear as a 

quantifier with a majority implication.  

In this connection, an old and potentially relevant thought—noted above, in connection 

with Hackl’s proposal—is that ‘most’ is a superlative version of ‘more’, which can figure in 

constructions like (15) and (16); cp. Bresnan (1973) and references there.  

(15)  More than three dots are yellow 

 (16)  More of the dots are yellow than blue 

Such examples invite appeal to a ternary concept MORE-THAN[N, "(X), #(X)] that is analytically 

equivalent to #["(X) & #(X)] > N. So one might specify the meanings of (15-16) as follows (cp. 
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Bhatt and Panchva, 2004): #[DOT(X) & YELLOW(X)] > 3; #[DOT(X) & YELLOW(X)] > #[DOT(X) & 

BLUE(X)]. And with regard to (2), one might suggest the following kind of meaning, letting ‘Y’ 

range over alternatives to the speaker: #[DOT(X) & HAS(SPEAKER, X)] > #[DOT(X) & HAS(Y, X)].  

This would preserve important aspects of (Heim/Hackl-style) quantify-over-alternatives 

views, which are often motivated by examples like (2). Whether or not the English determiner is 

a superlative with a decomposition involving quantification over alternatives, one can describe 

the determiner meaning as a special case of the plurality meaning, with comparison limited to the 

restricted complement of a concept like [DOT(X) & YELLOW(X)]; where the cardinality of the 

restricted complement can be represented with #[DOT(X)] – #[DOT(X) & YELLOW(X)]. In ongoing 

work, we have been investigating the ‘more’/‘most’ relation, using experimental methods like 

those described above. Our hope is that extending such studies to comparative morphemes, like 

‘er’ in ‘taller’, will then show that the results illustrated here for the English determiner bear on a 

wider class of constructions. 

Sentence (3) presents a different issue. At least prima facie, when speakers refer to some 

paint, they typically refer to some stuff that does not have a cardinality. Given one or more dots, 

those dots have a cardinality: one, two, seventeen, or whatever. In Fregean terms, some cardinal 

concept C["(X)]—ONE["(X)], TWO["(X)], SEVENTEEN["(X)], or whatever—can combine with 

DOT(X) to yield a true thought. But given some paint, it seems that no number is its cardinality. 

So it is unclear which (if any) “objects” fall under any concept of paint. Using underline to stress 

this point, the variable in PAINT(X) differs somehow from the variable in [DOT(X) & YELLOW(X)]. 

Correlatively, (3) is not an instruction for how to construct #[PAINT(X) & YELLOW(X)] > 

#[PAINT(X)] – #[PAINT(X) & YELLOW(X)]. Even if this representation is constructable, it does not 

seem to be the coherent thought expressed with (3); see 3.2 below. 
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In short, entities/satisfiers are countable things. If a word is satisfied by some entities, 

then some number n is the number of entities that satisfy the word. So if ‘red’ has an extension, it 

has a cardinality. But a decent theory of meaning must accommodate ‘red mud’ along with ‘red 

stick’. One can say that ‘mud’ has an extent: it is satisfied by some stuff s iff s is mud; and since 

‘red mud’ is satisfied by s iff s satisfies both ‘red’ and ‘mud’, ‘red’ is satisfied by s iff s is red. 

But then one needs to say what speakers know about how the stuff that satisfies ‘red’ relates to 

the countable entities (like sticks) that satisfy ‘red’? Does ‘red’ have an extent and an extension? 

Similar issues arise for nouns (e.g., ‘lamb’) that exhibit mass/count polysemy. One 

doesn’t usually think of ‘dot’ as such a noun. But examples like (4) highlight a striking fact: 

‘most’ can combine with a singular partitive phrase to form a phrase that has nothing to do with 

the cardinality of (the extension of) the embedded noun. Intuitively, (4) means roughly that the 

majority of a certain dot’s surface area is yellow. In this respect, (4) is more like (3) than (1). 

Examples like (17) highlight the point. 

(17) Most of the only large dot that was one of the dots you liked was yellow 

This suggests that detailed study of ‘most’—in tandem with investigations of how sentences like 

(3) and (4) are evaluated in scenes where a single surface exhibits two or more colors—may also 

shed light on the much debated topic of how “mass meanings” are related to “count meanings.”  

3.2  Mass Speculation  

We cannot review the many proposals concerning mass/count polysemy, much less offer and 

defend a new one. But if meanings are instructions for how to build concepts, as opposed to 

representation-neutral satisfaction conditions, perhaps ‘most dots’ and ‘most paint’ are 

instructions for how to build concepts that invite different evaluation strategies. In which case, 

evidence of the sort discussed above can be brought to bear on debates concerning whether: the 
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meanings of mass nouns are fundamental, with the meanings of count nouns somehow derived; 

the meanings of count nouns are fundamental, with the meanings of mass nouns somehow 

derived; both are special cases of a more neutral kind of semantic instruction; or these meanings 

are analytically independent.23  

One can ask, for example, if humans can evaluate sentences by using an ANS-like system 

that can estimate “quantities” of paint (mud, etc.) in terms of area, volume, or other suitable 

dimensions. If so, then given independent measures of discriminability for such a system, one 

could go on to ask how it is related to the ANS; see Odic et al. (submitted). In particular, if 

speakers evaluate a sentence like (3) by estimating the area/volume/whatever of the yellow paint 

and subtracting that estimate from a corresponding estimate for the total paint in question, what 

is the format of such estimations? Do speakers use a default unit size, given either innately or in 

the context, and use the ANS to estimate the relevant number of units? Or will experimental 

results reveal, as we suspect, that speakers use a system that does not depend on cardinal (or 

even rational) number representations in this way? 

Whatever the results, the general point is that such questions are ripe for investigation by 

employing known techniques from the study of perceptual psychology. And thinking in these 

ways can in turn suggest hypotheses about meaning that might otherwise be overlooked. Since 

‘#’ stands for a mental symbol that combines with a concept of countable things—e.g., DOT(X)—

                                                 
23 See Rothstein (2010) for a useful survey of options—including Link (1983), Gillon (1992), Krifka, (1989), 
Barner and Snedeker (2005), and Chierchia (1998a, 1998b)—and an interesting proposal of her own; see also 
Gordon (1985), Soja et al. (1991) and references there. Relatedly, if one thinks of meanings as instructions to build 
concepts, one can sharply distinguish hypotheses about the forms of the concepts assembled from any hypotheses 
about things to be found in the mind/language-independent world. Indeed, one might reject questions about whether 
‘rouge’ has both an extension and an extent, in favor of more overtly psychological questions about the kinds of 
concepts that ‘rouge’ can access. We suspect that progress on the latter questions has been hampered by the idea that 
meanings are representation-neutral, as described in section one. 
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to form a concept of the number of things that fall under that concept, let ‘Q’ stand for a mental 

symbol that combines with a “mass concept” like PAINT(X) to form a concept of the quantity that 

falls under that concept (cp. Cartwright (1975a,b), Koslicki (1999)); where quantities, like 

numbers, can be identified with equivalence classes of concepts (see notes 17 and 18). For any 

mass-concept, think of its quantity as the class of concepts that are equivalent to it in some way 

specified by that concept—mass, volume, area, or perhaps another way of measuring the extent 

(as opposed to the extension) of a concept; cp. Higginbotham (1994). 

On this view, the meaning of (3) directs construction of the thought shown in (3a), 

 (3)    Most of the paint is yellow 

(3a)  Q[PAINT(X) & YELLOW(X)] > Q[PAINT(X)] – Q[PAINT(X) & YELLOW(X)] 

with ‘yellow’ also used to fetch a mass-concept, making ‘yellow’ as polysemous as ‘dot’. 

Relatedly, one can say that (1) is not synonymous with (4), which corresponds to (4a).  

  (1)  Most of the dots are yellow 

  (4)  Most of the dot is yellow 

  (4a)  Q[DOT(X) & YELLOW(X)] > Q[DOT(X)] – Q[DOT(X) & YELLOW(X)] 

If the goal is to specify truth conditions, this proposal is at best boring: it simply replaces appeal 

to cardinalities with appeal to quantities. But from the perspective urged here, interesting and 

testable questions arise immediately: can humans compare and subtract the relevant quantities; 

can words make contact with the requisite representations; and do words exhibit this kind of 

polysemy, so that replacing a count noun with a mass noun corresponds to a difference in logical 

form that also makes for a difference in default verification procedure, as predicted by the 
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Interface Transparency Thesis?24  We suspect that the answers are affirmative, and that in any 

case, the studies used to find out will raise further interesting and testable questions, whose 

answers will suggest more articulated semantic theories that are increasingly not representation-

neutral.  

                                                 
24 Note that if cardinality-comparison for sentences like (1) shows a different behavioral profile than quantity-
comparison for sentences like (3) and (4), this could be a valuable tool in the study of many other constructions. 
Holding a given display like Figure 1 fixed across participants, those asked to evaluate ‘Most of the viruses are 
yellow’ should show the cardinality-comparison profile, while those asked to evaluate ‘Most of the virus is yellow’ 
should show the quantity-comparison profile. In ongoing work, we are trying to test this prediction. 
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Figures and Citations 
 

Figure 1: Four examples of displays from Pietroski et al. (2009). Under black and white viewing, 

dark grey are blue, and light grey are yellow dots. (a) “Scattered Random” display. (b) 

“Scattered Pairs” display. (c) “Column Pair Mixed” display. (d) “Column Pair Sorted” 

display. 

 

Figure 2: Results from the experiment of Pietroski et al (2009). Each dot represents the data from 

the participant. The ratio is calculated by dividing the larger set by the smaller; thus, 

smaller ratios are more difficult to discriminate. The data was fitted to a classic Weber 

model attested by the literature. Each fit was excellent (all r2 > 0.98). As can be seen, 

three of the four conditions showed identical results, with only the “Column Sorted Pairs” 

displaying unique performance. 

 

Table 1: Parameter estimates from psychophysical model used in Pietroski et al (2009). 

 

Figure 3: Data from Pietroski et al. (2009) that demonstrates that the signed error was evenly 

distributed in the positive and negative directions, suggesting that participants treated 

“most” as true if one set had more than 50% of the total number of dots. 

 

Figure 4: Four examples of displays from Lidz et al. (in press). Under black and white viewing, 

dark grey are blue. (a) Two-color display, which replicates Pietroski et al (2009). (b) A 

three-color display (c) A four-color display. (d) A five-color display. 
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Figure 5: Results from the experiment of Lidz et al (in press). Each dot represents the data from 

the participant. The ratio is calculated by dividing the larger set by the smaller; thus, 

smaller ratios are more difficult to discriminate. The data was fitted to a classic Weber 

model attested by the literature. Each fit was excellent (all r2 > 0.98). As can be seen, all 

conditions were comparable, suggesting that the number of sets did not matter for 

verifying “most”. 

 

Table 2: Parameter estimates from psychophysical model used in Lidz et al (2011). 
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